Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta thấy:
\(\frac{2012}{2013}+\frac{2013}{2014}>\frac{2012}{2014}+\frac{2013}{2014}=\frac{2012+2013}{2014}>\frac{2012+2013}{2013+2014}\)
\(\frac{2014^{2013}+1}{2014^{2013}-13}\)lớn hơn 1 là \(\frac{14}{2014^{2013}-13}\)
\(\frac{2014^{2012}+8}{2014^{2012}-11}\)lớn hơn 1 là \(\frac{19}{2014^{2012}-11}\)
\(\frac{14}{2014^{2013}-13}\)\(< \)\(\frac{19}{2014^{2012}-11}\)
\(\Rightarrow A< B\)
Gợi ý nhé: bạn hãy so sánh 2014A và 2014B rồi suy ngược lại A và B
Ta có:
2014A=20142014+ 2014/20142014+1=1+2013/20142014+1
2014B=20142013+2014/20142013+1=1+2013/20142013+1
vì 1+2013/20142014+1<1+2013/20142013+1 nên 10A < 10B
suy ra A<B
Ta có: \(B=\frac{2011}{2012+2013+2014}+\frac{2012}{2012+2013+2014}+\frac{2013}{2012+2013+2014}\)
A= \(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2014}\)
Xét từng số hạng của A và B
\(\frac{2011}{2012}>\frac{2011}{2012+2013+2014}\)
\(\frac{2012}{2013}>\frac{2012}{2012+2013+2014}\)
\(\frac{2013}{2014}>\frac{2013}{2012+2013+2014}\)
\(\Rightarrow\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2014}>\frac{2011+2012+2013}{2012+2013+2014}\)
\(\Rightarrow A>B\)
Đề bạn ghi có hơi sai chút nên tự tự sửa lại nha!
\(N=\frac{2012+2013+2014}{2013+2014+2015}=\frac{2012}{2013+2014+2015}+\frac{2013}{2013+2014+2015}+\frac{2014}{2013+2014+2015}\)
Ta thấy: \(\frac{2012}{2013}>\frac{2012}{2013+2014+2015}\)
\(\frac{2013}{2014}>\frac{2013}{2013+2014+2015}\)
\(\frac{2014}{2015}>\frac{2014}{2013+2014+2015}\)
\(\Rightarrow M=\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}>N=\frac{2012}{2013+2014+2015}+\frac{2013}{2013+2014+2015}+\frac{2014}{2013+2014+2015}\)
Vậy M>N
Ta có : B = \(\dfrac{2012+2013}{2013+2014}=\dfrac{2012}{2013+2014}+\dfrac{2013}{2013+2014}\) Ta có :
\(\dfrac{2012}{2013}>\dfrac{2012}{2013+2014}\)( vì 2012 > 0; 0<2013<2013+2014 )
\(\dfrac{2013}{2014}>\dfrac{2013}{2013+2014}\)( vì 2013>0; 0<2014<2013+2014 )
=> \(\dfrac{2012}{2013}+\dfrac{2013}{2014}>\dfrac{2012}{2013+2014}+\dfrac{2013}{2013+2014}\) => A > B
Vậy A > B
TA có :
A = \(\frac{10^{2012}-2}{10^{2013}-1}\)=> 10A = \(1-\frac{19}{10^{2013}-1}\)
B = \(\frac{10^{2013}-2}{10^{2014}-1}\)=> 10B = 1 - \(\frac{19}{10^{2014}-1}\)
Vì \(1-\frac{19}{10^{2013}-1}\)< 1 - \(\frac{19}{10^{2014}-1}\)hay 10A < 10B => A < B
Vậy A < B
\(B=\frac{2012}{2013+2014}+\frac{2013}{2013+2014}< \frac{2012}{2013}+\frac{2013}{2014}\)
\(\Rightarrow A>B\)
\(B=\frac{2012+2013}{2013+2014}=\frac{2012}{2013+1014}+\frac{2013}{2013+1014}\)
Vì: \(\frac{2012}{2013+1014}< \frac{2012}{2013}\)và \(\frac{2013}{2013+2013}< \frac{2013}{2014}\)
\(\Rightarrow A>B\)
~ Rất vui vì giúp đc bn ~