K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2019

Đầu tiên chúng ta sẽ so sánh như sau

5^2010 và 5^2009

vì 2010>2009 nên 5^2010>5^200 (1)

1/5^2011+1 và 1/5^2010+1

vì 2011+1=2012

   2010+1=2011

mà 2012>2011 nên 1/5^2011+1>1/5^2010+1 (2)

Từ 1 và 2 ta có thể suy ra A>B

Vậy A>B

2 tháng 6 2020

ta có 2010 >2009 suy ra 5^2010 >5^2009 suy ra 5^2010 + 1>5^2009 +1                                               (1)

         2011>2010 suy ra 5^2011 >5^2010 suy ra 1/5^2011<1/5^2010 suy ra 1/5^2011 +1 <1/5^2010 + 1  (2)

từ (1) và (2) => A=B

2 tháng 6 2020

Sorry mình viết thiếu B=5 mũ 2009\5 mũ 2010+1

1 tháng 4 2022

3 nhân 2/3 bao nhiêu

\(5A=\dfrac{5^{2022}+5}{5^{2022}+1}=1+\dfrac{4}{5^{2022}+1}\)

Sửa đề: \(B=\dfrac{5^{2020}+1}{5^{2021}+1}\)

=>\(5B=\dfrac{5^{2021}+5}{5^{2021}+1}=1+\dfrac{4}{5^{2021}+1}\)

5^2022>5^2021

=>5^2022+1>5^2021+1

=>5A<5B

=>A<B

8 tháng 12 2016

A=(1+2010)+2010 mũ 2+2010 mũ 3 +...+2010 mũ 6 + 2010 mũ 7

A=2011+2010 mũ 2(1+2010)+...+2010 mũ 6(1+2010)

A=2011+2010 mũ 2.2011+...2010 mũ 6.2011

A=2011(1+2010+...+2010 mũ 6)chia hết cho 2011

27 tháng 9 2019

\(A=2^0+2^1+2^2+2^3+...+2^{2010}\)

\(A=1+2+2^2+2^3+...+2^{2010}\)

\(2A=2+2^2+2^3+...+2^{2011}\)

\(2A-A=\left[2+2^2+2^3+...+2^{2011}\right]-\left[1+2+2^2+2^3+...+2^{2010}\right]\)

\(A=2^{2011}-1\)

Mà \(B=2^{2011}-1\)

=> A = B

27 tháng 9 2019

Ta có: A=\(2^0+2^1+2^2+2^3+...+2^{2010}\)

          2A=\(2^1+2^2+2^3+2^4+...+2^{2011}\)

     2A-A hay A=\(2^{2011}-2^0\)

                       =\(2^{2011}-1\)

Vì \(2^{2011}-1=2^{2011}-1\)

\(\Rightarrow\)A=B

Hok tốt nha!!!

23 tháng 4 2017

Ta có :

\(2010A=\dfrac{2010^{2012}+2010}{2010^{2012}+1}=\dfrac{2010^{2012}+1+2009}{2010^{2012}+1}=1+\dfrac{2009}{2010^{2012}+1}\)

\(2010B=\dfrac{2010^{2011}+2010}{2010^{2011}+1}=\dfrac{2010^{2011}+1+2009}{2010^{2011}+1}=1+\dfrac{2009}{2010^{2011}+1}\)

\(1+\dfrac{2009}{2010^{2012}+1}< 1+\dfrac{2009}{2010^{2011}+1}\Rightarrow A< B\)

~ Học tốt ~

DD
16 tháng 12 2020

a) \(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(A=3\left(2+2^3+...+2^{2009}\right)⋮3\)

\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

\(A=7\left(2^1+2^4+...+2^{2008}\right)⋮7\)

Các ý dưới bạn làm tương tự nhé.