K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2023

Ta có :

\(5^{199}< 5^{200}=5^{2\cdot100}=25^{100}\)

\(3^{300}=3^{3\cdot100}=27^{100}\)

Mà \(25^{100}< 27^{100}\Rightarrow5^{199}< 3^{300}\)

Vậy \(\dfrac{1}{3^{300}}>\dfrac{1}{5^{199}}\)

 

19 tháng 10 2023

3³⁰⁰ = (3³)¹⁰⁰ = 27¹⁰⁰

5²⁰⁰ = (5²)¹⁰⁰ = 25¹⁰⁰

Do 27 > 5 nên 27¹⁰⁰ > 25¹⁰⁰

⇒ 3³⁰⁰ > 5²⁰⁰ (1)

Do 200 > 199 nên 5²⁰⁰ > 5¹⁹⁹ (2)

Từ (1) và (2) ⇒ 3³⁰⁰ > 5¹⁹⁹

⇒ 1/3³⁰⁰ < 1/5¹⁹⁹

Bài 1:

a: Sửa đề: 1/3^200

1/2^300=(1/8)^100

1/3^200=(1/9)^100

mà 1/8>1/9

nên 1/2^300>1/3^200

b: 1/5^199>1/5^200=1/25^100

1/3^300=1/27^100

mà 25^100<27^100

nên 1/5^199>1/3^300

1/5^199<1/3^300

23 tháng 8 2023

1) \(5^{199}< 5^{200}=25^{100}\)

\(3^{300}=27^{100}>25^{100}\)

\(\Rightarrow3^{300}>5^{199}\)

\(\Rightarrow\dfrac{1}{3^{300}}< \dfrac{1}{5^{199}}\)

2)  a) \(107^{50}=\left(107^2\right)^{25}=11449^{25}\)

\(73^{75}=\left(73^3\right)^{25}=389017^{25}>11449^{25}\)

\(\Rightarrow107^{50}< 73^{75}\)

b) \(54^4< 5^{12}< 21^{12}\Rightarrow54^4< 21^{12}\)

23 tháng 8 2023

Giúp mình với

31 tháng 10 2016

Ta sẽ so sánh \(5^{199}\)\(3^{300}\)

Mà:\(5^{199}< 5^{200}=25^{100}< 27^{100}=3^{300}\)

\(\Rightarrow5^{199}< 3^{300}\Rightarrow\frac{1}{5^{199}}>\frac{1}{3^{300}}\)

10 tháng 8 2016

\(3^{300}=\left(3^3\right)^{100}=27^{100}\)

\(5^{199}< 5^{200}\) mà \(5^{200}=25^{100}\)

\(25^{100}< 27^{100}\Rightarrow3^{300}>5^{200}>5^{199}\)

Trong hai phân số cùng tử nếu mẫu nào lớn hớn thì phân số đó bé hơn.

Vậy : \(\frac{1}{5^{199}}>\frac{1}{3^{300}}\)

3 tháng 10 2018

a) \(2^{24}< 3^{16}\)

b) \(3^{34}>5^{20}\)

c) \(\left(3\cdot24\right)^{100}< 3^{300}+4^{300}\)

d) \(199^{20}>200^{15}\)

17 tháng 9 2021

a) Vì \(\dfrac{1}{24}< \dfrac{1}{83}\) 

⇒ \(\dfrac{1}{24^9}>\dfrac{1}{83^{13}}\)

17 tháng 9 2021

a) \(\left(\dfrac{1}{24}\right)^9>\left(\dfrac{1}{27}\right)^9=\dfrac{1}{3^{27}}\)

\(\left(\dfrac{1}{83}\right)^{13}< \left(\dfrac{1}{81}\right)^{13}=\dfrac{1}{3^{52}}\)

Mà \(\dfrac{1}{3^{27}}>\dfrac{1}{3^{52}}\)

\(\Rightarrow\left(\dfrac{1}{24}\right)^9>\left(\dfrac{1}{83}\right)^{13}\)

b) \(3^{300}=\left(3^3\right)^{100}=27^{100}\)

\(5^{199}< 5^{200}=\left(5^2\right)^{100}=25^{100}\)

Mà \(25^{100}< 27^{100}\)

\(\Rightarrow5^{199}< 3^{300}\)

\(\Rightarrow\dfrac{1}{5^{199}}>\dfrac{1}{3^{300}}\)