Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(2^{36}\)và \(3^{27}\)
\(2^{36}=\left(2^4\right)^9=16^9\)
\(3^{27}=\left(3^3\right)^9=27^9\)
Vì \(16< 27\Rightarrow16^9< 27^9\)
Vậy....
b,\(9^{20}\)và \(9999^{10}\)
\(9^{20}=\left(9^2\right)^{10}=81^{10}\)
\(9999^{10}\)
Vì \(81< 9999\Rightarrow81^{10}< 9999^{10}\)
Vậy ...
c,\(54^4\)
\(21^{12}=\left(21^3\right)^4=9261^4\)
Vì \(54< 9261\Rightarrow54^4< 9261^4\)
Vậy...
a) Ta có: \(10^{20}=\left(10^2\right)^{10}=100^{10}\)
Mà \(100^{10}>19^{10}\)
\(\Rightarrow10^{20}>19^{10}\)
b) Ta có: \(\left(-5\right)^{30}=5^{30}=\left(5^3\right)^{10}=125^{10}\)
\(\left(-3\right)^{50}=3^{50}=\left(3^5\right)^{10}=243^{10}\)
Mà: \(125^{10}< 243^{10}\)
\(\Rightarrow\left(-5\right)^{30}< \left(-3\right)^{50}\)
c) Ta có: \(64^8=\left(2^6\right)^8=2^{48}\)
\(16^{12}=\left(2^4\right)^{12}=2^{48}\)
Mà: \(2^{48}=2^{48}\)
\(\Rightarrow64^8=16^{12}\)
a) 1020và 1910
Ta có: 1020= (102)10 và 1910
= 10010 và 1910
Vì 10010>1910 => 1020>1910
b) (-5)30 và (-3)50
Ta có:
(-5)30= [(-5)3]10=(-125)10 và (-3)50=[(-3)5]10=(-243)10
Vì -12510>-24310 Nên (-5)30>(-3)50
c) 648 và 1612
= (43)8và (42)12
= 424 và 424
=> 648 = 1612
1) Ta có:
128 = (22.3)8 = 216.38
812 = (23)12 = 236 = 216.220 = 216.(22)10 = 216.410
Vì 216.38 < 216.410
=> 128 < 812
2) Ta có:
(-5)39 = -539 = -(53)13 = -12513
(-2)91 = -291 = -(27)13 = -12813
Vì -12513 > -12813
=> (-5)39 > (-2)91
\(4^{30}=2^{60}\)
\(8^{12}=2^{36}\)
mà 60>36
nên \(4^{30}>8^{12}\)
\(\left(-\frac{1}{5}\right)^{300}=-\frac{1^{300}}{5^{300}}=-\frac{1}{5^{300}}\)
\(\left(-\frac{1}{5}\right)^{500}=-\frac{1^{500}}{5^{500}}=-\frac{1}{5^{500}}\)
Ta có :
\(5^{300}< 5^{500}\)
\(\Rightarrow-5^{300}>-5^{500}\)
\(\Rightarrow-\frac{1}{5^{300}}>-\frac{1}{5^{500}}\)
\(\Rightarrow\left(-\frac{1}{5}\right)^{300}>\left(-\frac{1}{5}\right)^{500}\)
a: \(\left(-\dfrac{1}{16}\right)^{100}=\left(\dfrac{1}{16}\right)^{100}=\left(-\dfrac{1}{2}\right)^{400}\)
\(\left(-\dfrac{1}{2}\right)^{500}=\left(-\dfrac{1}{2}\right)^{500}\)
mà \(400< 500\)
nên \(\left(-\dfrac{1}{16}\right)^{100}< \left(-\dfrac{1}{2}\right)^{500}\)