Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Lan viết đúng, vì :
(Nhân cả tử và mẫu với x)
+ Hùng viết sai vì :
+ Giang viết đúng vì :
+ Huy viết sai vì :
Nhân cả hai vế của bất đẳng thức a + 1 ≤ b + 2 với 2 > 0 ta được
2(a + 1) ≤ 2(b + 2) Û 2a + 2 ≤ 2b + 4.
Đáp án cần chọn là: D
Nhân cả hai vế của bất đẳng thức a - 2 ≤ b - 1 với 2 > 0 ta được:
2(a - 2) ≤ 2(b - 1) Û 2a - 4 ≤ 2b - 2.
Đáp án cần chọn là: D
\(a+b+c\ge3\sqrt[3]{3}\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)
Nhân 2 vế ta được: \(\left(a+b+c\right).\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)
Vậy \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\left(đpcm\right)\)
Nhân 2 vế vs a b c , xog r nhân hết ra pên vế traj ,
xog lấy tử chja mẫu sẽ đc 3 a/b b a c/b b/c a/c c/a ,
từg kặp số trên >=2 ,
cộg vao pag 3 2.3=9
Bạn Trương who A,B,C,D để tìm đáp án sai hả cậu :)
Nhưng tớ có đáp án đúng :P mong cậu không chê hình của tớ và tớ không chắc đâu :)
N M C P B A D
Áp dụng hệ quả của định lý Ta-lét ta có :
-Do AD // BP nên \(\frac{AN}{NP}=\frac{AD}{BP}\)
-Do DC // AB nên \(\frac{DM}{AB}=\frac{ND}{NB}\)
Ta có : \(\frac{MC}{DM}=\frac{MD}{AM}\) mà \(\frac{MP}{AM}=\frac{CD}{BC}\Rightarrow\frac{MC}{DM}=\frac{PC}{CB}\)
em chắc chắn số 5
so 8 em nghi zay
k nha