Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi 3 phần được chia của M lần lượt là: x,y,z
đổi: 0,5 = 1/2
\(1\frac{2}{3}=\frac{5}{3}\)
\(2\frac{1}{4}=\frac{9}{4}\)
ta có: \(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{5}{3}}=\frac{z}{\frac{9}{4}}=\frac{x^2}{\left(\frac{1}{2}\right)^2}=\frac{y^2}{\left(\frac{5}{3}\right)^2}=\frac{z^2}{\left(\frac{9}{4}\right)^2}\)
áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{\left(\frac{1}{2}\right)^2}=\frac{y^2}{\left(\frac{5}{3}\right)^2}=\frac{x^2}{\left(\frac{9}{4}\right)^2}=\frac{x^2+y^2+z^2}{\left(\frac{1}{2}\right)^2+\left(\frac{5}{3}\right)^2+\left(\frac{9}{4}\right)^2}=\frac{4660}{\frac{1165}{144}}=576\)
\(\frac{x^2}{\left(\frac{1}{2}\right)^2}=576\Rightarrow x=\sqrt{\left(576\cdot\left(\frac{1}{2}\right)^2\right)}=12\) và \(x=-12\)
\(\frac{y^2}{\left(\frac{5}{3}\right)^2}=576\Rightarrow y=\sqrt{\left(576\cdot\left(\frac{5}{3}\right)^2\right)}=40\) và \(y=-40\)
\(\frac{z^2}{\left(\frac{9}{4}\right)^2}=576\Rightarrow z=\sqrt{\left(576\cdot\left(\frac{9}{4}\right)^2\right)}=54\) và \(z=-54\)
vậy số M = 12+40+54=106
và số M = -12 + (-40) + (-54) = -106
\(1\frac{2}{3}=\frac{5}{3};2\frac{1}{4}=\frac{9}{4};0,5=\frac{1}{2}\)
GỌi 3 phần của M được chia là a;b;c
Theo đề, ta có: \(\frac{a}{\frac{1}{2}}=\frac{b}{\frac{5}{3}}=\frac{c}{\frac{9}{4}}\Rightarrow\frac{a^2}{\left(\frac{1}{2}\right)^2}=\frac{b^2}{\left(\frac{5}{3}\right)^2}=\frac{c^2}{\left(\frac{9}{4}\right)^2}\)
\(=\frac{a^2+b^2+c^2}{\left(\frac{1}{2}\right)^2+\left(\frac{5}{3}\right)^2+\left(\frac{9}{4}\right)^2}=\frac{4660}{\frac{1165}{144}}=576\)
\(\Rightarrow a^2=576.\left(\frac{1}{2}\right)^2=144\Rightarrow a=\pm\sqrt{144}=\pm12\)
\(b^2=576.\left(\frac{5}{3}\right)^2=1600\Rightarrow b=\pm\sqrt{1600}=\pm40\)
\(c^2=576.\left(\frac{9}{4}\right)^2=2916\Rightarrow c=\pm\sqrt{2916}=\pm54\)
Vậy M = 12 + 40 + 54 = 106
Hoặc M = -12 + (-40) + (-54) = -106
Gọi ba số cần tìm là a,b,c
Đặt \(\dfrac{a}{2}=\dfrac{b}{\dfrac{3}{2}}=\dfrac{c}{\dfrac{4}{3}}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=2k\\b=\dfrac{3}{2}k\\c=\dfrac{4}{3}k\end{matrix}\right.\)
Ta có: \(a^2+b^2+c^2=724\)
\(\Leftrightarrow4k^2+\dfrac{9}{4}k^2+\dfrac{16}{9}k^2=724\)
\(\Leftrightarrow k^2=\dfrac{26064}{289}\)
Trường hợp 1: \(k=\dfrac{12\sqrt{181}}{17}\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=2k=\dfrac{24\sqrt{181}}{17}\\b=\dfrac{3}{2}k=\dfrac{18\sqrt{181}}{17}\\c=\dfrac{4}{3}k=\dfrac{16\sqrt{181}}{17}\end{matrix}\right.\)
Trường hợp 2: \(k=\dfrac{-12\sqrt{181}}{17}\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=2k=\dfrac{-24\sqrt{181}}{17}\\b=\dfrac{3}{2}k=\dfrac{-18\sqrt{181}}{17}\\c=\dfrac{4}{3}k=\dfrac{-16\sqrt{181}}{17}\end{matrix}\right.\)
Gọi ba phần số M chia ra lần lượt là a,b,c
Ta có : a^b+b^2+c^2 = 4660
a : b : c = 1/2 : 5/3 : 9/4
=> a : 1/2 = b : 5/3 = c : 9/4
=> 2a/1 = 3b/5 = 4c/9
=> 2a/1 x 45 = 3b/5 x45 = 4c/9 x 45
=> 90a = 27b = 20c
*90a=27b => a/27 = b/90 => a/3 = b/10 => a/6 = b/20 [1]
*27b =20c => b/20 = c/27 [2]
Từ [1] , [2] => a/6 =b/20=c/27
Đặt a/6=b/20=c/27=k
=> a=6k , b/20k , c=27k
=> a^2+b^2+c^2=1165.k^2 = 4660 => k^2 = 4 => k = 2 hoặc -2
với k = 2 thì a= 12 , b = 40 , c= -54 => M = 12+40+54=106
với k= 2 thì a= -12, b= -40 , c= -54 => M= -106
Gọi ba phần số M chia ra lần lượt là a,b,c
Ta có : a^b+b^2+c^2 = 4660
a : b : c = 1/2 : 5/3 : 9/4
=> a : 1/2 = b : 5/3 = c : 9/4
=> 2a/1 = 3b/5 = 4c/9
=> 2a/1 x 45 = 3b/5 x45 = 4c/9 x 45
=> 90a = 27b = 20c
*90a=27b => a/27 = b/90 => a/3 = b/10 => a/6 = b/20 [1]
*27b =20c => b/20 = c/27 [2]
Từ [1] , [2] => a/6 =b/20=c/27
Đặt a/6=b/20=c/27=k
=> a=6k , b/20k , c=27k
=> a^2+b^2+c^2=1165.k^2 = 4660 => k^2 = 4 => k = 2 hoặc -2
với k = 2 thì a= 12 , b = 40 , c= -54 => M = 12+40+54=106
với k= 2 thì a= -12, b= -40 , c= -54 => M= -106
Tìm số M được chia làm 3 phần tỉ lệ với 0, 5 ; 5/3 ; 9/4.Biết tổng 3 bình phương của 3 số đó là 4660
Giải:
Gọi 3 phần của số M là a, b, c ( a,b,c\(\in\)N* )
Ta có: \(\frac{a}{0,5}=\frac{b}{\frac{5}{3}}=\frac{c}{\frac{9}{4}}\)
\(\Rightarrow\frac{a}{\frac{1}{2}}=\frac{b}{\frac{5}{3}}=\frac{c}{\frac{9}{4}}\)
\(\Rightarrow\frac{a^2}{\frac{1}{4}}=\frac{b^2}{\frac{25}{9}}=\frac{c^2}{\frac{81}{16}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a^2}{\frac{1}{4}}=\frac{b^2}{\frac{25}{9}}=\frac{c^2}{\frac{81}{16}}=\frac{a^2+b^2+c^2}{\frac{1}{4}+\frac{25}{9}+\frac{81}{16}}=\frac{4460}{\frac{1155}{144}}=576\)
+) \(\frac{a^2}{\frac{1}{4}}=576\Rightarrow a^2=144\Rightarrow a=\pm12\)
+) \(\frac{b^2}{\frac{25}{9}}=576\Rightarrow b^2=1600\Rightarrow b=\pm40\)
+) \(\frac{c^2}{\frac{81}{16}}=576\Rightarrow c^2=2916\Rightarrow c=\pm56\)
+) \(M=12+40+54=106\)
+) \(M=\left(-12\right)+\left(-40\right)+\left(-56\right)=-106\)
Vậy M = 106 hoặc M = -106
...