Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 8 là \(\left(8a^2-\dfrac{1}{2}b\right)^6\) hay \(\left(8a^2-\dfrac{1}{2b}\right)^6\) bạn? (tốt nhất là bạn dùng tính năng gõ công thức toán để đăng đề, hoặc chụp hình gửi đề trực tiếp lên, hiện nay hoc24 đã cho đăng đề bằng hình ảnh)
9.
\(\left(x+8.x^{-2}\right)^9=\sum\limits^9_{k=0}C_9^kx^{9-k}.8^k.x^{-2k}=\sum\limits^9_{k=0}C_9^k8^kx^{9-3k}\)
Số hạng ko chứa x \(\Rightarrow9-3k=0\Rightarrow k=3\)
Số hạng đó là: \(C_9^3.8^3=...\)
Ta có:
Chọn x=1. Ta có tổng hệ số bằng:
Lại có:
Số hạng không chứa x suy ra
Do đó số hạng không chứa x là:
Chọn D.
\(\left(x^3-2x^{-1}\right)^8\)
Số hạng tổng quát trong khai triển:
\(C_8^kx^{3k}\left(-2\right)^{8-k}x^{k-8}=C_8^k\left(-2\right)^{8-k}x^{4k-8}\)
Số hạng ko chứa x \(\Rightarrow4k-8=0\Rightarrow k=2\)
Số hạng cần tìm: \(C_8^2.\left(-2\right)^6=...\)
\(\left(x-a\right)^3\left(x+b\right)^6=\sum\limits^3_{k=0}C_3^kx^k.\left(-a\right)^{3-k}.\sum\limits^6_{i=0}C_6^ix^i.b^{6-i}=\sum\limits^3_{k=0}\sum\limits^6_{i=0}x^{k+i}C_3^kC_6^i\left(-a\right)^{3-k}.b^{6-i}\)
Số hạng chứa \(x^7\Rightarrow\left\{{}\begin{matrix}0\le k\le3\\0\le i\le6\\k+i=7\end{matrix}\right.\)
\(\Rightarrow\left(k;i\right)=\left(1;6\right);\left(2;5\right);\left(3;4\right)\)
\(\Rightarrow C_3^1C_6^6\left(-a\right)^2+C_3^2C_6^5\left(-a\right).b+C_3^3C_6^4b^2=-36\)
\(\Rightarrow3a^2-18ab+15b^2=-36\Rightarrow a^2-6ab+5b^2=-12\) (1)
Số hạng chứa \(x^8\Rightarrow k+i=8\)
\(\Rightarrow\left(k;i\right)=\left(2;6\right);\left(3;5\right)\)
Do ko có số hạng chứa \(x^8\Rightarrow\) hệ số của số hạng chứa \(x^8\) bằng 0
\(\Rightarrow C_3^2C_6^6\left(-a\right)+C_3^3C_6^5.b=0\)
\(\Rightarrow-3a+6b=0\Rightarrow b=\dfrac{a}{2}\)
Thế vào (1):
\(\Rightarrow a^2-3a^2+\dfrac{5}{4}a^2=-12\)
\(\Rightarrow a^2=16\Rightarrow a=\pm4\)
Chọn B