K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2016

đặt x^3=t ( t thuộc Z) ta có:

2t^2-2ty+y^2=64 =>4t^2-4ty+2y^2=128<=> (2t-y)^2+y^2=128 (*)

Các số chính phương chỉ có thể tận cùng là 0;1;4;5;6;9 .Theo (*) tổng 2 số chính phương tận cùng bởi 8, nên 2 số đó có cùng tận cùng là 4. Mặt khác tổng 2 số chính phương này bằng 128 nên 2 số chính phương này bằng nhau và bằng 64, nên:

  1. (2t-y)^2=64
  2. y^2=64

=>

  1. (2t-y)^2=64
  2. y= -8 hoặc 8

* Với y=8  thì (2t-8)^2=64

=>

  • 2t-8=8 =>t=8=>x=2
  • 2t-8=-8=>t=0 =>x=0

* Với y=-8 thì (2t+8)^2=64 

=> 

  • 2t+8=8 =>t=0 =>x=0
  • 2t+8=-8=>t=8 => x=2

vậy có 4 cặp (x;y) =(2;8);(0;8);(0;-8);(-2;-8)

Đồng ý kết bạn đi

9 tháng 3 2016

hình nhứ có 3 cặp thì phải 

1 tháng 3 2017

2​17737

Vì 1/2<>1/3

nên hệ luôn có nghiệm duy nhất

x+y=2 và 2x+3y=m

=>2x+2y=4 và 2x+3y=m

=>-y=4-m và x+y=2

=>y=m-4 và x=2-y=2-m+4=6-m

x+2y<5

=>6-m+2m-8<5

=>m-2<5

=>m<7

=>Có 6 số nguyên dương thỏa mãn

1 tháng 3 2017

2x6+y2-2x3y=320

<=> x6 + (x3-y)2 = 320

Vì x; y là các số nguyên nên ta có:

0 <= x6 <= 320

0 <= x2 <= 7 Suy ra x2 = 0; 1; 4

Thay các ẩn x trở lại phương trình ta được các cặp nghiệm nguyên là

(2;24); (-2;-24); (2;-8); (-2;8)

Vậy có 4 cặp (x0;y0) nguyên thỏa mãn bài toán.

1 tháng 3 2017

cảm ơn mong được giúp đỡ nhiều :))

14 tháng 4 2022

Bài 1.

\(\left\{{}\begin{matrix}x-3y=5-2m\\2x+y=3\left(m+1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3y=5-2m\\6x+3y=9m+9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7x=7m+14\\x-3y=5-2m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\m+2-3y=5-2m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\-3y=-3m+3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\y=m-1\end{matrix}\right.\)

\(x_0^2+y_0^2=9m\)

\(\Leftrightarrow\left(m+2\right)^2+\left(m-1\right)^2=9m\)

\(\Leftrightarrow m^2+4m+4+m^2-2m+1-9m=0\)

\(\Leftrightarrow2m^2-7m+5=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=1\\m=\dfrac{5}{2}\end{matrix}\right.\) ( Vi-ét )

30 tháng 1 2018

\(\left\{{}\begin{matrix}y=5-mx\\2x-5+mx=-2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=5-mx\\x\left(m+2\right)=3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=5-mx\\x=\dfrac{3}{m+2}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=5-m.\dfrac{3}{m+2}\\x=\dfrac{3}{m+2}\end{matrix}\right.\)

Ta co : xo+yo=1

=> 5-\(\dfrac{3m}{m+2}+\dfrac{3}{m+2}=1\)

=> \(\dfrac{5.\left(m+2\right)-3m+3}{m+2}=1\)

=> 5m+10-3m+3=m+2

=> 2m-m=2-13

=> m=-11

31 tháng 1 2018

\(\left\{{}\begin{matrix}mx+y=5\left(1\right)\\2x-y=-2\left(2\right)\end{matrix}\right.\)

từ (1) ta có y=5-mx(3)

thế vào (2) ta có 2x-5+mx=-2\(\Leftrightarrow\) (2+m)x=3\(\Leftrightarrow\)x=\(\dfrac{3}{2+m}\)(4)

thế (4) vào (3) ta có

y=5-m\(\dfrac{3}{2+m}\)=\(\dfrac{10+2m}{2+m}\)

vậy hệ có nghiệm duy nhất là(\(\dfrac{3}{2+m}\);\(\dfrac{10+2m}{2+m}\))

mà x+y=1

\(\Rightarrow\)\(\dfrac{3}{2+m}+\dfrac{10+2m}{2+m}=1\)\(\Leftrightarrow\)m=-11

vậy m=-11

3 tháng 5 2020

\(\left\{{}\begin{matrix}mx+y=5\\2x-y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(m+2\right)x=3\\2x-y=-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{3}{m+2}\\\frac{6}{m+2}-y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{3}{m+2}\\y=\frac{10+2m}{m+2}\end{matrix}\right.\)

\(\Rightarrow x+y=\frac{3}{m+2}+\frac{10+2m}{m+2}=\frac{13+2m}{m+2}\)

\(\Leftrightarrow\frac{13+2m}{m+2}=1\Leftrightarrow13+2m=m+2\)

\(\Leftrightarrow m=-11\)