K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 7 2020

1. Ta có: \(-1\le sinx\le1\)

\(\Rightarrow-3\le y\le3\) (hàm đã cho đồng biến trên \(\left[-\frac{\pi}{2};\frac{\pi}{2}\right]\)

\(y_{min}=-3\) khi \(sinx=-1\)

\(y_{max}=3\) khi \(sinx=1\)

2.

\(y=1-sin^2x-2sinx=2-\left(sinx+1\right)^2\)

Do \(-1\le sinx\le1\Rightarrow0\le sinx+1\le2\)

\(\Rightarrow-2\le y\le2\)

\(y_{min}=-2\) khi \(sinx=1\)

\(y_{max}=2\) khi \(sinx=-1\)

3.

\(y=1-cos^2x+cos^4x=\left(cos^2x-\frac{1}{2}\right)^2+\frac{3}{4}\)

\(\Rightarrow y\ge\frac{3}{4}\Rightarrow y_{min}=\frac{3}{4}\) khi \(cos^2x=\frac{1}{2}\)

\(y=1+cos^2x\left(cos^2x-1\right)\le1\) do \(cos^2x-1\le0\)

\(\Rightarrow y_{max}=1\) khi \(\left[{}\begin{matrix}cos^2x=1\\cos^2x=0\end{matrix}\right.\)

4.

\(y=\left(sin^2x+cos^2x\right)^2-2\left(sinx.cosx\right)^2+sinx.cosx\)

\(y=1-\frac{1}{2}sin^22x+\frac{1}{2}sin2x\)

\(y=\frac{9}{8}-\frac{1}{2}\left(sinx-\frac{1}{2}\right)^2\le\frac{9}{8}\)

\(y_{max}=\frac{9}{8}\) khi \(sinx=\frac{1}{2}\)

\(y=\frac{1}{2}\left(sinx+1\right)\left(2-sinx\right)\ge0;\forall x\)

\(\Rightarrow y_{min}=0\) khi \(sinx=-1\)

NV
16 tháng 9 2019

a/ \(\Leftrightarrow2cosx.cos2x=cos2x\)

\(\Leftrightarrow2cosx.cos2x-cos2x=0\)

\(\Leftrightarrow cos2x\left(2cosx-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}cos2x=0\\cosx=\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}+k\pi\\x=\pm\frac{\pi}{3}+k2\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+\frac{k\pi}{2}\\x=\pm\frac{\pi}{3}+k2\pi\end{matrix}\right.\)

b/ \(\Leftrightarrow2sinx.sin2x=sinx\)

\(\Leftrightarrow2sinx.sin2x-sinx=0\)

\(\Leftrightarrow sinx\left(2sin2x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}sinx=0\\sin2x=\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=k\pi\\2x=\frac{\pi}{6}+k2\pi\\2x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{\pi}{12}+k\pi\\x=\frac{5\pi}{12}+k\pi\end{matrix}\right.\)

NV
16 tháng 9 2019

c/ \(\Leftrightarrow sin3x-sinx+sin4x-sin2x=0\)

\(\Leftrightarrow2cos2x.sinx+2cos3x.sinx=0\)

\(\Leftrightarrow sinx\left(cos2x+cos3x\right)=0\)

\(\Leftrightarrow2sinx.2cos\frac{5x}{2}.cos\frac{x}{2}=0\)

\(\Rightarrow\left[{}\begin{matrix}sinx=0\\cos\frac{5x}{2}=0\\cos\frac{x}{2}=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=k\pi\\\frac{5x}{2}=\frac{\pi}{2}+k2\pi\\\frac{x}{2}=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{\pi}{5}+\frac{k4\pi}{5}\\x=\pi+k4\pi\end{matrix}\right.\)

d/ \(\Leftrightarrow sin3x-sinx-\left(sin4x-sin2x\right)=0\)

\(\Leftrightarrow2cos2x.sinx-2cos3x.sinx=0\)

\(\Leftrightarrow sinx\left(cos2x-cos3x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\cos2x=cos3x\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=k\pi\\2x=3x+k2\pi\\2x=-3x+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{k2\pi}{5}\end{matrix}\right.\)

NV
7 tháng 10 2020

a. ĐKXĐ: ...

\(\frac{sinx}{cosx}+\frac{sin2x}{cos2x}+\frac{sin3x}{cos3x}=0\)

\(\Leftrightarrow\frac{sin2x.cosx+cos2x.sinx}{cosx.cos2x}+\frac{sin3x}{cos3x}=0\)

\(\Leftrightarrow\frac{sin3x}{cosx.cos2x}+\frac{sin3x}{cos3x}=0\)

\(\Leftrightarrow sin3x\left(\frac{cosx.cos2x+cos3x}{cosx.cos2x.cos3x}\right)=0\)

\(\Leftrightarrow sin3x\left(\frac{cosx\left(2cos^2x-1\right)+4cos^3x-3cosx}{cosx.cos2x.cos3x}\right)=0\)

\(\Leftrightarrow sin3x\left(\frac{6cos^2x-4}{cos2x.cos3x}\right)=0\)

\(\Leftrightarrow sin3x\left(\frac{3cos2x-1}{cos2x.cos3x}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin3x=0\\cos2x=\frac{1}{3}\end{matrix}\right.\)

NV
7 tháng 10 2020

b.

\(cos2x\left(2cos^22x-1\right)=\frac{1}{2}\)

\(\Leftrightarrow4cos^32x-2cos2x-1=0\)

Pt bậc 3 này ko giải được, chắc bạn ghi nhầm đề

c. ĐKXĐ: ...

\(\frac{cosx}{sinx}-\frac{sinx}{cosx}=cosx-sinx\)

\(\Leftrightarrow\frac{\left(cosx-sinx\right)\left(cosx+sinx\right)}{sinx.cosx}=cosx-sinx\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx-sinx=0\Rightarrow x=...\\\frac{cosx+sinx}{sinx.cosx}=1\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow cosx+sinx=sinx.cosx\)

Đặt \(sinx+cosx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\sinx.cosx=\frac{t^2-1}{2}\end{matrix}\right.\)

\(\Rightarrow t=\frac{t^2-1}{2}\Rightarrow t^2-2t-1=0\Rightarrow\left[{}\begin{matrix}t=1+\sqrt{2}\left(l\right)\\t=1-\sqrt{2}\end{matrix}\right.\)

\(\Rightarrow\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=1-\sqrt{2}\Rightarrow sin\left(x+\frac{\pi}{4}\right)=\frac{1-\sqrt{2}}{\sqrt{2}}\Rightarrow x=...\)

AH
Akai Haruma
Giáo viên
2 tháng 9 2023

a.

Tìm min:

$y=(4\sin ^2x-4\sin x+1)+2=(2\sin x-1)^2+2$
Vì $(2\sin x-1)^2\geq 0$ với mọi $x$ nên $y=(2\sin x-1)^2+2\geq 0+2=2$

Vậy $y_{\min}=2$

----------------

Mặt khác: 

$y=4\sin x(\sin x+1)-8(\sin x+1)+11$

$=(\sin x+1)(4\sin x-8)+11$

$=4(\sin x+1)(\sin x-2)+11$

Vì $\sin x\in [-1;1]\Rightarrow \sin x+1\geq 0; \sin x-2<0$

$\Rightarrow 4(\sin x+1)(\sin x-2)\leq 0$

$\Rightarrow y=4(\sin x+1)(\sin x-2)+11\leq 11$

Vậy $y_{\max}=11$

 

AH
Akai Haruma
Giáo viên
2 tháng 9 2023

b.

$y=\cos ^2x+2\sin x+2=1-\sin ^2x+2\sin x+2$

$=3-\sin ^2x+2\sin x$
$=4-(\sin ^2x-2\sin x+1)=4-(\sin x-1)^2\leq 4-0=4$

Vậy $y_{\max}=4$.

---------------------------

Mặt khác:

$y=3-\sin ^2x+2\sin x = (1-\sin ^2x)+(2+2\sin x)$

$=(1-\sin x)(1+\sin x)+2(1+\sin x)=(1+\sin x)(1-\sin x+2)$

$=(1+\sin x)(3-\sin x)$

Vì $\sin x\in [-1;1]$ nên $1+\sin x\geq 0; 3-\sin x>0$

$\Rightarrow y=(1+\sin x)(3-\sin x)\geq 0$

Vậy $y_{\min}=0$

NV
15 tháng 9 2020

b.

\(\Leftrightarrow2sin^2x+4sinx=3\left(1-sin^2x\right)\)

\(\Leftrightarrow5sin^2x+4sinx-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{-2-\sqrt{19}}{5}\left(l\right)\\sinx=\frac{-2+\sqrt{19}}{5}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=arcsin\left(\frac{-2+\sqrt{19}}{5}\right)+k2\pi\\x=\pi-arcsin\left(\frac{-2+\sqrt{19}}{5}\right)+k2\pi\end{matrix}\right.\)

c.

\(\Leftrightarrow sinx\left(sin^2x+3sinx+2\right)=0\)

\(\Leftrightarrow sinx\left(sinx+1\right)\left(sinx+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\sinx=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

NV
15 tháng 9 2020

a.

\(1-cos^22x-\left(\frac{1-cos2x}{2}\right)=\frac{1}{2}\)

\(\Leftrightarrow2cos^22x-cos2x=0\)

\(\Leftrightarrow cos2x\left(2cos2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\cos2x=\frac{1}{2}\\\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}+k\pi\\2x=\frac{\pi}{3}+k2\pi\\2x=-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+\frac{k\pi}{2}\\x=\frac{\pi}{6}+k\pi\\x=-\frac{\pi}{6}+k\pi\end{matrix}\right.\)

NV
16 tháng 9 2021

a.

\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{2}cos2x=\dfrac{1}{2}-\dfrac{1}{2}cos6x\)

\(\Leftrightarrow cos2x=cos6x\)

\(\Leftrightarrow\left[{}\begin{matrix}6x=2x+k2\pi\\6x=-2x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4x=k2\pi\\8x=k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{k\pi}{2}\\x=\dfrac{k\pi}{4}\end{matrix}\right.\)

NV
16 tháng 9 2021

b.

\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{2}cos2x+\dfrac{1}{2}-\dfrac{1}{2}cos4x+\dfrac{1}{2}-\dfrac{1}{2}cos6x=\dfrac{3}{2}\)

\(\Leftrightarrow cos2x+cos6x+cos4x=0\)

\(\Leftrightarrow2cos4x.cos2x+cos4x=0\)

\(\Leftrightarrow cos4x\left(2cos2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos4x=0\\cos2x=-\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4x=\dfrac{\pi}{2}+k\pi\\2x=\dfrac{2\pi}{3}+k2\pi\\2x=-\dfrac{2\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{8}+\dfrac{k\pi}{4}\\x=\dfrac{\pi}{3}+k\pi\\x=-\dfrac{\pi}{3}+k\pi\end{matrix}\right.\)

NV
16 tháng 9 2021

Số hạng cuối là sin mũ mấy vậy nhỉ?