Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)
\(2S=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
\(2S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
\(2S=1-\frac{1}{101}\Rightarrow2S+\frac{1}{101}=1\)
\(2S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.........+\frac{1}{99}-\frac{1}{101}=1-\frac{1}{101}\)
\(2S+\frac{1}{101}=1-\frac{1}{101}+\frac{1}{101}=1\)
2S=2/1.3+2/3.5+....+2/99.101
2S=1-1/3+1/3-1/5+....+1/99-1/101
2S=1-1/101
2S+1/101=1-1/101+1/101=1
Nho tick nha
\(S=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)
\(S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
\(S=1-\frac{1}{101}=\frac{100}{101}\)
\(2S+\frac{1}{101}=\frac{100}{101}\)
\(S=2.\frac{100}{101}+\frac{1}{101}\)
\(\Rightarrow S=\frac{201}{101}\)
****
\(S1=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{99.101}\)
\(S1=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-....-\frac{1}{101}=\frac{1}{1}-\frac{1}{101}=\frac{100}{101}\)
\(S2=\frac{5}{1.3}+\frac{5}{3.5}+....+\frac{5}{99.101}\)
\(S2=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-.....-\frac{1}{101}\right)=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{101}\right)=\frac{5}{2}\cdot\frac{100}{101}=\frac{250}{101}\)
A có tổng cộng 49 số hạng, nhóm 2 số hạng liên tiếp với nhau được:
\(A=\left(\frac{1}{1.3}-\frac{2}{3.5}\right)+\left(\frac{3}{5.7}-\frac{4}{7.9}\right)+...+\left(\frac{47}{93.95}-\frac{48}{95.97}\right)+\frac{49}{97.99}\)
\(A=\frac{1}{1.5}+\frac{1}{5.9}+...+\frac{1}{93.97}+\frac{49}{97.99}\)=> \(4A=\frac{4}{1.5}+\frac{4}{5.9}+...+\frac{4}{93.97}+\frac{196}{97.99}=\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+...+\frac{1}{93}-\frac{1}{97}+\frac{196}{97.99}\)
=> \(4A=1-\frac{1}{97}+\frac{196}{97.99}=\frac{96}{97}+\frac{196}{97.99}=\frac{9700}{97.99}=\frac{100}{99}>1\)
\(4A>1=>A>\frac{1}{4}\)
\(S=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)
\(S=\frac{2}{2}.\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\right)\)
\(S=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\)
\(S=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(S=\frac{1}{2}.\left(1-\frac{1}{101}\right)\)
\(S=\frac{1}{2}.\frac{100}{101}=\frac{50}{101}\)
nhân S cho 2
Công thức \(\frac{2}{x.\left(x+2\right)}=\frac{1}{x}-\frac{1}{x+2}\)
\(C=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{35.37}\)
\(C=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{35.37}\right)\)
\(C=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{35}-\frac{1}{37}\right)\)
\(C=\frac{1}{2}.\left(1-\frac{1}{37}\right)\)
\(C=\frac{1}{2}.\frac{36}{37}\)
\(C=\frac{18}{37}\)
\(C=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{35.37}\)
\(C=\frac{1}{2}\cdot\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{35}-\frac{1}{37}\right)\)
\(C=\frac{1}{2}\cdot\left(1-\frac{1}{37}\right)\)
\(C=\frac{1}{2}\cdot\frac{36}{37}=\frac{18}{37}\)
Vay C = \(\frac{18}{37}\)
\(S=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{101}\right)\)
\(=\frac{1}{2}.\frac{100}{101}=\frac{50}{101}\)
=> 2S + 1/101 = \(2.\frac{50}{101}+\frac{1}{101}=\frac{100}{101}+\frac{1}{101}=\frac{101}{101}=1\)