Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{2021}{2022}\)
\(\Leftrightarrow1-\dfrac{1}{x+1}=\dfrac{2021}{2022}\)
\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{2022}\)
=>x+1=2022
hay x=2021
\(B=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{98.99}\)
\(=\dfrac{2-1}{1.2}+\dfrac{3-2}{2.3}+\dfrac{4-3}{3.4}+...+\dfrac{99-98}{98.99}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{99}\)
\(=1-\dfrac{1}{99}\)
\(A=\dfrac{2021}{2022}=\dfrac{2022-1}{2022}=1-\dfrac{1}{2022}\)
Có \(2022>99>0\Leftrightarrow\dfrac{1}{99}>\dfrac{1}{2022}\)
Suy ra \(A>B\).
- Nguyễn Thị Thu Chi
- S=1.2+2.3+3.4+.............+n(n+1)
S =1(1+1) + 2(2+1) + 3(3+1) +...+n(n+1)
S =(1^2 + 2^2 + 3^2 +...+ n^2) + (1 + 2 + 3 + ...+ n)
ta có các công thức:
1^2 + 2^2 + 3^2 +...+ n^2 = n(n+1)(2n+1)/6
1 + 2 + 3 + ...+ n = n(n+1)/2
thay vào ta có:
S = n(n+1)(2n+1)/6 + n(n+1)/2
=n(n+1)/2[(2n+1)/3 + 1]
=n(n+1)(n+2)/3
ko chắc chắn lắm
A = \(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\) + ... + \(\dfrac{1}{99.100}\)
A = \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\) + ... + \(\dfrac{1}{99}\) - \(\dfrac{1}{100}\)
A = \(\dfrac{1}{2}\) - \(\dfrac{1}{100}\)
Vậy: A = \(\dfrac{49}{100}\)
A=\(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{99.100}\)
A=\(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
A=\(\dfrac{1}{2}-\dfrac{1}{100}\)
A=\(\dfrac{49}{100}\)
\(S=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+.......+\frac{1}{49\cdot50}\)
\(S=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+.......+\frac{1}{49}+\frac{1}{50}\)
\(S=\frac{1}{2}-\frac{1}{50}\)
\(S=\frac{25}{50}-\frac{1}{50}\)
\(S=\frac{24}{50}=\frac{12}{25}\)
ai k mh mh k lại
k cho mh nha
S=1/2.3+1/3.4+1/4.5+....+1/49.50
=\(\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+...........+\frac{1}{49x50}\)
=\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+..........+\frac{1}{49}-\frac{1}{50}\)
=\(\frac{1}{2}-\frac{1}{50}\)
=\(\frac{24}{50}\) mình cũng ko chắc đúng nhưng đây là cách giải của mình
\(S=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(S=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(S=\frac{1}{2}-\frac{1}{100}\)
\(S=\frac{49}{100}\)
chúc các bạn học tốt
\(S=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(S=1-\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(S=1\times\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(S=1\times\frac{49}{100}\)
\(S=\frac{49}{100}\)
\(S=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\)
\(\Rightarrow S=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)
\(\Rightarrow S=\frac{1}{2}-\frac{1}{2018}\)
\(\Rightarrow S=\frac{1008}{2018}\)
bạn rút gọn nốt nha mk ko có máy tính
\(S=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{2017}-\frac{1}{2018}\)
\(S=\frac{1}{2}-\frac{1}{2018}\)
\(S=\frac{504}{1009}\)
HK TỐT NHÉ
\(S=\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{2021+2022}\)
\(S=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{2021}+\dfrac{1}{2021}-\dfrac{1}{2022}\)
\(S=\dfrac{1}{2}-\dfrac{1}{2022}\)
\(S=\dfrac{1011}{2022}-\dfrac{1}{2022}\)
\(S=\dfrac{505}{1011}\)
tutu mik đang tính lại