Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong các số 1, 2, 3, …, 12; có tám số không chia hết cho 3 là: 1, 2, 4, 5, 7, 8, 10, 11.
Vậy có tám kết quả thuận lợi cho biến cố “Số xuất hiện trên thẻ được rút ra là số không chia hết cho 3” là: 1, 2, 4, 5, 7, 8, 10, 11 (lấy ra từ tập hợp C = {1; 2; 3; …; 12}).
Tập hợp gồm các kết quả có thể xảy ra đối với số xuất hiện trên thẻ rút ra là: B = {1, 2, 3, …, 51, 52}.
Số phần tử của B là 52.
a) Trong các số từ 1 đến 52 có ba số chia 17 dư 2 là: 2, 19, 36. Trong 3 số trên, có một số chia 3 dư 1 là 19.
Vậy có một kết quả thuận lợi cho biến cố “Số xuất hiện trên thẻ được rút ra là số chia cho 17 dư 2 và chia cho 3 dư 1” là: 19.
Vì thế, xác suất của biến cố trên là: \(\dfrac{1}{{52}}\)
b) Có tám kết quả thuận lợi cho biến cố “Số xuất hiện trên thẻ được rút ra là số có chứa chữ số 5” là: 5, 15, 25, 35, 45, 50, 51, 52.
Vì thế, xác suất của biến cố trên là: \(\dfrac{8}{{52}} = \dfrac{2}{{13}}\)
Số cách rút ngẫu nhiên 2 thẻ khác nhau trong hộp là:
\(A^2_4=12\left(cách\right)\)
TH1: hai thẻ rút ra đều là số chẵn
Thẻ đầu tiên có 2 cách rút
Thẻ thứ hai có 1 cách rút
=>Có 2*1=2 cách rút
TH2: Trong hai thẻ rút ra có 1 thẻ chẵn, 1 thẻ lẻ
Số cách rút ra 1 thẻ chẵn là 2 cách
Số cách rút ra 2 thẻ chẵn là 2 cách
=>Có 2*2=4 cách rút
Tổng số cách để tích hai thẻ rút ra là số chẵn là:
2+4=6(cách)
Xác suất để rút ra hai thẻ có tích là số chẵn là:
\(\dfrac{6}{12}=\dfrac{1}{2}\)
cho một hộp có 10 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số {1;2;3;...;10}, hai thẻ khác nhau là hai số khác nhau. Nêu kết quả thuận lợi của biến cố " Xuất hiện trên thẻ được rút ra là số chia hết cho 5".
Đây ạ
Tập hợp gồm các kết quả có thể xảy ra đối với số xuất hiện trên thẻ rút ra là: B = {1, 2, 3, …, 11, 12}.
Số phần tử của B là 12.
Có tám kết quả thuận lợi cho biến cố “Số xuất hiện trên thẻ rút ra là số không chia hết cho 3” là: 1, 2, 4, 5, 7, 8, 10, 11.
Vì thế, xác suất của biến cố trên là: \(\dfrac{8}{{12}} = \dfrac{2}{3}\)