K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2020

Không ai trả lời luôn

28 tháng 9 2022

a) A= 3.(x2-2xy+y2)- 2. (x2+2xy+y2) - x2-y2

A= 3.x2-2xy+y2-2. x2+2xy+y2-x2-y2

 

26 tháng 6 2021

`a)(x-1)^2-(x-2)(x+2)`

`=x^2-2x+1-(x^2-4)`

`=-2x+5`

`b)(2x+4)(8x-3)(4x+1)^2`

`=(16x^2-6x+32x-12)(16x^2+8x+1)`

`=(16x^2-26x-12)(16x^2+8x+1)`

`=256x^4+128x^3+16x^2-416x^3-208x^2-26x-192x^2-96x-12`

`=256x^4-288x^3-384x^2-122x-12`

`c)(a+2)^3-a(a-3)^2`

`=a^3+6a^2+12a+8-a(a^2-6a+9)`

`=a^3+6a^2+12a+8-a^3+6a^2-9a`

`=12a^2+3a+8`

15 tháng 8 2016

a) \(4x^2\left(5x-3y\right)-x^2\left(4x+y\right)=20x^3-12x^2y-4x^3-x^2y=16x^3-13x^2y\)

b) \(2ax^2-a\left(1+2x^2\right)-\left[a-x\left(x+a\right)\right]\)

\(=2ax^2-a-2ax^2-a+x^2+ax=x^2+ax-a\)

15 tháng 8 2016

ol mà ko thèm nt vs a nha !!!!!

11 tháng 10 2020

Trước hết xoá \(\frac{2x}{a^2-a+1}\)ở 2 vế. Nếu \(\frac{a}{a+1}>0\left(a< -1;a>0\right)\)thì \(x< \frac{a}{4}\). Nếu \(\frac{a}{a+1}< 0\left(-1< a< 0\right)\)thì \(x>\frac{a}{4}\)

12 tháng 10 2020

\(ĐKXĐ:a\ne-1\)

\(\frac{2x}{a^2-a+1}-\frac{1}{2a+2}< \frac{4x-1}{2a^2-2a+2}+\frac{a-2ax}{1+a^3}\Leftrightarrow\frac{2x}{a^2-a+1}-\frac{1}{2a+2}< \frac{2x}{a^2-a+1}-\frac{1}{2a^2-2a+2}+\frac{a}{1+a^3}-\frac{2ax}{1+a^3}\)\(\Leftrightarrow\frac{1}{2a+2}-\frac{1}{2a^2-2a+2}+\frac{a}{1+a^3}>\frac{2ax}{1+a^3}\Leftrightarrow\frac{a^2-a+1-a-1+2a}{2\left(a^3+1\right)}>\frac{2ax}{1+a^3}\Leftrightarrow\frac{a^2}{2\left(1+a^3\right)}>\frac{4ax}{2\left(1+a^3\right)}\)\(\Leftrightarrow\frac{4ax}{a+1}< \frac{a^2}{a+1}\)

* Nếu \(\frac{a}{a+1}>0\)(tức là a < -1 hoặc a > 0) thì \(x< \frac{a}{4}\)

* Nếu \(\frac{a}{a+1}< 0\)(tức là -1 < a < 0) thì \(x>\frac{a}{4}\)

8 tháng 3 2017

\(\Leftrightarrow\dfrac{2x}{a^2-a+1}+\dfrac{-4x}{2a^2-2a+2a^2}+\dfrac{2ax}{1+a^3}< \dfrac{1}{2a+2}-\dfrac{1}{2a^2-2a+2}+\dfrac{a}{1+a^3}\)

\(\Leftrightarrow\left(\dfrac{2}{a^2-a+1}-\dfrac{4}{2a^2-2a+2}+\dfrac{2a}{1+a^3}\right).x< \left(\dfrac{1}{2a+2}-\dfrac{1}{2a^2-2a+2}+\dfrac{a}{1+a^3}\right)\)

\(\Leftrightarrow\left(\dfrac{2a}{1+a^3}\right)x< \dfrac{\left(a^2-a+1\right)-\left(a+1\right)+2a}{2.\left(a+1\right)\left(a^2-a+1\right)}=\dfrac{a^2}{1+a^3}\)

\(\Leftrightarrow\left(\dfrac{2a}{1+a^3}\right)x< \dfrac{a^2}{2.\left(1+a^3\right)}\)

\(a=0\Rightarrow vo...N_o\)

\(\left\{{}\begin{matrix}\dfrac{2a}{a^3+1}>0\Leftrightarrow\left[{}\begin{matrix}a< -1\\a>0\end{matrix}\right.\\x< \dfrac{a^2}{2\left(a^3+1\right)}:\dfrac{2a}{\left(a^3+1\right)}=\dfrac{a}{2}\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\dfrac{2a}{a^3+1}< 0\Rightarrow-1< a< 0\\x>\dfrac{a}{2}\end{matrix}\right.\)