Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 1- \(sin^2\alpha\)= \(cos^2\alpha\)
b) (\(1-cos\alpha\))(\(1+cos\alpha\)) = 1 - cos2\(\alpha\) = sin2\(\alpha\)
c) 1 + cos2\(\alpha\) + sin2\(\alpha\) = \(1+1=2\)
d) sin\(\alpha\) - sin\(\alpha.cos^2\alpha\)
= \(sin\alpha\left(1-cos^2\alpha\right)=sin\alpha.sin^2\alpha=sin^3\alpha\)
e) \(sin^4\alpha+cos^4\alpha+2sin^2\alpha.cos^2\alpha\)
= \(\left(sin^2\alpha\right)^2+2sin^2\alpha.cos^2\alpha+\left(cos^2\alpha\right)^2\)
= \(\left(sin^2\alpha+cos^2\alpha\right)^2=1^2=1\)
f) \(tan^2\alpha-sin^2\alpha.tan^2\alpha\)
= \(tan^2\alpha\left(1-sin^2\alpha\right)=tan^2\alpha.cos^2\alpha=sin^2\alpha\)
g) \(cos^2\alpha+tan^2\alpha.cos^2\alpha\)
= \(cos^2\alpha\left(1+tan^2\alpha\right)=cos^2\alpha.\dfrac{1}{cos^2\alpha}=1\)
h) \(tan^2\alpha\left(2cos^2\alpha+sin^2\alpha-1\right)\)
= \(tan^2\alpha\left[cos^2\alpha+\left(cos^2\alpha+sin^2\alpha\right)-1\right]\)
= \(tan^2\alpha\left(cos^2\alpha+1-1\right)\)
= \(tan^2\alpha.cos^2\alpha=sin^2\alpha\)
Ta có:
\(sin=\dfrac{doi}{huyen}\); \(cos=\dfrac{ke}{chuyen}\);\(tan=\dfrac{doi}{ke}\); \(cot=\dfrac{ke}{doi}\)
Dùng cái này làm được hết mấy câu đó.
nếu bn thấy dùng cách của hùng có hới dài thì bn chỉ cần sử dụng cách đó cho 3 ý trên thôi . còn 3 ý dưới bn có thể sử dụng công thức \(sin^2x+cos^2x=1\) vừa chứng minh xong để giải quyết .
a) \(\cos^4\alpha-\sin^4\alpha=\left(\cos^2\alpha+\sin^2\alpha\right)\left(\cos^2\alpha-\sin^2\alpha\right)=\cos^2\alpha-\sin^2\alpha\)
\(2\cos^2\alpha-\left(\sin^2\alpha+\cos^2\alpha\right)=2\cos^2\alpha-1\)
b) \(\frac{\cos\alpha}{1-\sin\alpha}=\frac{1+\sin\alpha}{\cos\alpha}\)\(\Leftrightarrow\)\(\left(1-\sin\alpha\right)\left(1+\sin\alpha\right)=\cos^2\alpha\)
\(\Leftrightarrow\)\(1-\left(\sin^2\alpha+\cos^2\alpha\right)=0\)\(\Leftrightarrow\)\(1-1=0\) ( luôn đúng )
c) \(\frac{\left(\sin\alpha+\cos\alpha\right)^2-\left(\sin\alpha-\cos\alpha\right)^2}{\sin\alpha.\cos\alpha}=\frac{2\cos\alpha.2\sin\alpha}{\sin\alpha.\cos\alpha}=4\)
um, hình như câu b) chỗ 1-.... đó hơi sai nếu viết từ bước trên xuống á bạn!
mình nghĩ là: sau dấu bằng đầu tiên, sau đó là:
\(=cos^2\alpha=1-sin^2\alpha\)(luôn đúng)
CẢM ƠN bạn nhiều lắm luôn nha!!!!!
\(A=\frac{sina+cosa}{cosa-sina}=\frac{\frac{sina}{cosa}+\frac{cosa}{cosa}}{\frac{cosa}{cosa}-\frac{sina}{cosa}}=\frac{tana+1}{1-tana}=\frac{5+1}{1-5}=...\)
\(B=\frac{8cos^3a-2sin^3a+cosa}{2cosa-sin^3a}\) để làm được câu này chỉ cần nhớ đến công thức: \(\frac{1}{cos^2a}=1+tan^2a\)
\(B=\frac{\frac{8cos^3a}{cos^3a}-\frac{2sin^3a}{cos^3a}+\frac{cosa}{cosa}.\frac{1}{cos^2a}}{\frac{2cosa}{cosa}.\frac{1}{cos^2a}-\frac{sin^3a}{cos^3a}}=\frac{8-2tan^3a+1+tan^2a}{2\left(1+tan^2a\right)-tan^3a}=\frac{9-2tan^3a+tan^2a}{2+2tan^2a-tan^3a}=\frac{9-2.5^3+5^2}{2+2.5^2-5^3}=...\)
\(1+\sin^2\alpha+\cos^2\alpha=1+1=2\)
\(\sin^4\alpha+\cos^4\alpha+2\sin^2\alpha\cdot\cos^2\alpha\\ =\left(\sin^2\alpha\right)^2+2\sin^2\alpha\cdot\cos^2\alpha+\left(\cos^2\alpha\right)^2\\ =\left(\sin^2\alpha+\cos^2\alpha\right)^2\\ =1^2=1\)
\(\tan^2\alpha-\sin^2\alpha\cdot\tan^2\alpha\\ =\tan^2\alpha\left(1-\sin^2\alpha\right)\\ =\left(\frac{\sin\alpha}{\cos\alpha}\right)^2\cdot\cos^2\alpha\\ =\frac{\sin^2\alpha}{\cos^2\alpha}\cdot\cos^2\alpha\\ =\sin^2\alpha\)
\(\cos^2\alpha+\tan^2\alpha\cdot\cos^2\alpha\\ =\cos^2\alpha+\left(\frac{\sin\alpha}{\cos\alpha}\right)^2\cdot\cos^2\alpha\\ =\cos^2\alpha+\frac{\sin^2\alpha}{\cos^2\alpha}\cdot\cos^2\alpha\\ =\cos^2\alpha+\sin^2\alpha\\ =1\)
\(\tan^2\alpha\cdot\left(2\cos^2\alpha+\sin^2\alpha-1\right)\\ =\tan^2\alpha\cdot\left(2\cos^2\alpha+\sin^2\alpha-\sin^2\alpha-\cos^2\alpha\right)\\ =\tan^2\alpha\cdot\cos^2\alpha\\ =\frac{\sin^2\alpha}{\cos^2\alpha}\cdot\cos^2\alpha=\sin^2\alpha\)
a: \(\left(1-cosx\right)\left(1+cosx\right)=1^2-cos^2x=sin^2x\)
b: \(tan^2x\left(2cos^2x+sin^2x-1\right)\)
\(=tan^2x\left(1-1+cos^2x\right)\)
\(=\dfrac{sin^2x}{cos^2x}\cdot cos^2x=sin^2x\)
c: \(sin^4x+cos^4x+2\cdot cos^2x\cdot sin^2x\)
\(=\left(sin^2x+cos^2x\right)^2\)
\(=1^2=1\)