Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 222..4 có tổng các chữ số là 104 chia 3 dư 2 nên k phải là số cp
b.ko vì số chính phương luôn luôn chia cho 3 và 4 có số dư là 2
c, A=1994^4+7 chia 4 dư 3 nên A k phải là số cp
d,B=144..4 = 4.361..11(97 số 1)=> B chính phương <=> 361..1 chính phương mà 361..11 chi 4 dư 3 do đó B k phải là số cp
x.(x+4).(x-4)-(x2+1).(x2-1)
=x.(x2-16)-(x4-1)
=x3-16x-x4+1
=-x4+x3-16x+1
x.(x+4).(x-4)-(x2+1).(x2-1)
=x.(x2-16)-(x4-1)
=x3-16x-x4+1
=x4+x3-16x+1
\(\text{Xét công thức tổng quát }:x^4+\frac{1}{4}=\left(x^4+2.x^2.\frac{1}{2}+\frac{1}{4}\right)-x^2\)
\(=\left(x^2+\frac{1}{2}\right)^2-x^2=\left(x^2-x+\frac{1}{2}\right)\left(x^2+x+\frac{1}{2}\right)\)
Áp dụng vào B ta đc:
\(B=\frac{\left(1^4+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)...\left(11^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)...\left(12^4+\frac{1}{4}\right)}\)
\(=\frac{\left(1^2-1+\frac{1}{2}\right)\left(1^2+1+\frac{1}{2}\right)\left(3^2-3+\frac{1}{2}\right)\left(3^2+3+\frac{1}{2}\right)...\left(11^2-11+\frac{1}{2}\right)\left(11^2+11+\frac{1}{2}\right)}{\left(2^2-2+\frac{1}{2}\right)\left(2^2+2+\frac{1}{2}\right)\left(4^2-4+\frac{1}{2}\right)\left(4^2+4+\frac{1}{2}\right)...\left(12^2-12+\frac{1}{2}\right)\left(12^2+12+\frac{1}{2}\right)}\)
\(=\frac{\frac{1}{2}\left(2+\frac{1}{2}\right)\left(6+\frac{1}{2}\right)\left(12+\frac{1}{2}\right)...\left(110+\frac{1}{2}\right)\left(122+\frac{1}{2}\right)}{\left(2+\frac{1}{2}\right)\left(6+\frac{1}{2}\right)\left(12+\frac{1}{2}\right)\left(20+\frac{1}{2}\right)...\left(132+\frac{1}{2}\right)\left(156+\frac{1}{2}\right)}\)
\(=\frac{\frac{1}{2}\left(122+\frac{1}{2}\right)}{\left(132+\frac{1}{2}\right)\left(156+\frac{1}{2}\right)}=\frac{49}{16589}\)
ko biết có đúng ko!! hình như còn 1 cách là nhân 1 đa thức với 16 nữa thì phải lâu ko động đến bạn thử xem đc ko nhé
\(P=\frac{\left(x^{10}-x^8\right)+\left(x^6-x^4\right)+\left(x^2-1\right)}{\left(x^2\right)^2-1}\)
\(=\frac{x^8\left(x^2-1\right)+x^4\left(x^2-1\right)+\left(x^2-1\right)}{\left(x^2-1\right)\left(x^2+1\right)}\)
\(=\frac{\left(x^2-1\right)\left(x^8+x^4+1\right)}{\left(x^2-1\right)\left(x^2+1\right)}=\frac{x^8+x^4+1}{x^2+1}\)
a, A = 22...24 có tổng các chữ số là 2.50 + 4 = 104 chia 3 dư 2
\(\Rightarrow\)A chia 3 dư 2 mà không có SCP nào chia 3 dư 2
\(\Rightarrow\)A không là SCP
các bạn làm ko ra à