Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
\(C=-\frac{3}{5}.\frac{20}{135}.\frac{-7}{1400}.\frac{250}{3}.\frac{27}{10}\)
\(C=\frac{-3}{5}.\frac{4}{27}.\frac{-1}{200}.\frac{250}{3}.\frac{27}{10}\)
\(C=\frac{-3.4.\left(-1\right).250.27}{5.27.200.3.10}\)
\(C=\frac{1}{10}\)
Vậy \(C=\frac{1}{10}\)
# Học tốt #
C = \(\frac{-3}{5}\cdot\frac{20}{135}\cdot\frac{-7}{1400}\cdot\frac{250}{3}\cdot\frac{27}{10}\) C = \(\left(\frac{-3}{5}\cdot\frac{250}{3}\right)\cdot\left(\frac{20}{135}\cdot\frac{27}{10}\right)\cdot\frac{-7}{1400}\) C = \(-50\cdot\frac{2}{5}\cdot\frac{-7}{1400}\) C = \(-20\cdot\frac{-7}{1400}\) C = \(\frac{1}{10}\)
\(B=\frac{0,6-\frac{3}{11}+\frac{3}{13}}{1,4-\frac{7}{11}+\frac{7}{13}}-\frac{\frac{1}{3}-0,25+\frac{1}{5}}{1\frac{1}{6}-0,875+0,7}\)
\(B=\frac{\frac{3}{5}-\frac{3}{11}+\frac{3}{13}}{\frac{7}{5}-\frac{7}{11}+\frac{7}{13}}-\frac{\frac{1}{3}-\frac{1}{4}+\frac{1}{5}}{\frac{7}{6}-\frac{7}{8}+\frac{7}{10}}\)
\(B=\frac{3\left(\frac{1}{5}-\frac{1}{11}+\frac{1}{13}\right)}{5\left(\frac{1}{5}-\frac{1}{11}+\frac{1}{13}\right)}-\frac{\frac{1}{3}-\frac{1}{4}+\frac{1}{5}}{7\left(\frac{1}{6}-\frac{1}{8}+\frac{1}{10}\right)}\)
\(B=\frac{3}{5}-\frac{\frac{1}{3}-\frac{1}{4}+\frac{1}{5}}{7.\frac{1}{2}\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{5}\right)}\)
\(B=\frac{3}{5}-\frac{2}{7}=\frac{11}{35}\)
\(\Rightarrow A=\frac{\frac{1}{2}-\frac{1}{5}+\frac{1}{7}}{\frac{3}{8}-\frac{3}{5}+\frac{3}{7}}+\frac{\frac{1}{2}+\frac{1}{3}-\frac{1}{5}}{\frac{3}{4}+\frac{1}{2}+\frac{3}{10}}\)
\(\Rightarrow A=\frac{\frac{1}{2}-\frac{1}{5}+\frac{1}{7}}{3.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{7}\right)}+\frac{\frac{1}{2}+\frac{1}{3}-\frac{1}{5}}{\frac{3}{2}.\left(\frac{1}{2}+\frac{1}{3}-\frac{1}{5}\right)}\)
\(\Rightarrow A=\frac{1}{3}+\frac{2}{3}\)
\(\Rightarrow A=1\)
a)
\(\frac{{{4^3}{{.9}^7}}}{{{{27}^5}{{.8}^2}}} = \frac{{{{\left( {{2^2}} \right)}^3}.{{\left( {{3^2}} \right)}^7}}}{{{{\left( {{3^3}} \right)}^5}.{{\left( {{2^3}} \right)}^2}}} =\frac{2^{2.3}.3^{2.7}}{3^{3.5}.2^{2.3}}= \frac{{{2^6}{{.3}^{14}}}}{{{3^{15}}{{.2}^6}}} = \frac{1}{3}\)
b)
\(\frac{{{{\left( { - 2} \right)}^3}.{{\left( { - 2} \right)}^7}}}{{{{3.4}^6}}} =\frac{(-2)^{3+7}}{3.(2^2)^6}= \frac{{{{\left( { - 2} \right)}^{10}}}}{{3.{{\left( {{2^{2.6}}} \right)}}}} = \frac{{{2^{10}}}}{{{{3.2}^{12}}}} = \frac{1}{{{{3.2}^2}}} = \frac{1}{{12}}\)
c)
\(\begin{array}{l}\frac{{{{\left( {0,2} \right)}^5}.{{\left( {0,09} \right)}^3}}}{{{{\left( {0,2} \right)}^7}.{{\left( {0,3} \right)}^4}}} = \frac{{{{\left( {0,2} \right)}^5}.{{\left[ {{{\left( {0,3} \right)}^2}} \right]}^3}}}{{{{\left( {0,2} \right)}^7}.{{\left( {0,3} \right)}^4}}} = \frac{{{{\left( {0,2} \right)}^5}.{{\left( {0,3} \right)}^6}}}{{{{\left( {0,2} \right)}^7}.{{\left( {0,3} \right)}^4}}}\\ = \frac{{{{\left( {0,3} \right)}^2}}}{{{{\left( {0,2} \right)}^2}}} = \frac{{0,9}}{{0,4}} = \frac{9}{4}\end{array}\)
d)
Cách 1: \(\frac{{{2^3} + {2^4} + {2^5}}}{{{7^2}}} = \frac{{8 + 16 + 32}}{{49}} = \frac{{56}}{{49}} = \frac{8}{7}\)
Cách 2: \(\frac{{{2^3} + {2^4} + {2^5}}}{{{7^2}}} = \frac{{2^3.(1+2+2^2)}}{{7^2}} = \frac{{2^3.7}}{{7^2}} = \frac{8}{7}\)
\(A=\frac{1}{3}\)
\(B=\frac{25}{11}.\frac{13}{12}.\left(-2,2\right)=\frac{-65}{12}\)
\(C=\frac{11}{20}.\left(-\frac{2}{5}\right)=-\frac{11}{50}\)
tự sắp xếp nha
A= 2/3 +3/4 . -4/9
= 2/3 - 1/3
= 1/3
B=\(2\frac{3}{11}.1\frac{1}{12}.\left(-2,2\right)\)
= 25/11.13/12.-11/5
= (25/11.-11/5).13/12
= -5 . 13/12
= -65/12
C= (3/4-0,2)(0,4-4/5)
= (0,75 - 0,2)( 0,4 - 0,8)
= 0,55 . -0,4
= -0,22 = -11/50
Ta có: A= 1/3 ; B=-65/12 ; C= -11/50
=> -65/12 < -11/50 < 0
Mà 1/3 > 0 => -65/ 12 < -11/50 < 1/3
Vậy b<c<a
\(A=\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{97\cdot99}-\frac{5}{4}\cdot\frac{13}{99}+\frac{5}{99}\cdot\frac{1}{4}\)
\(A=\frac{1}{2}\left(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{97\cdot99}\right)-\frac{13}{4}\cdot\frac{5}{99}+\frac{5}{99}\cdot\frac{1}{4}\)
\(A=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)-\frac{5}{99}\cdot\left(\frac{13}{4}-\frac{1}{4}\right)\)
\(A=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{99}\right)-\frac{5}{99}\cdot3\)
\(A=\frac{1}{2}\cdot\frac{32}{99}-\frac{5}{33}\)
\(A=\frac{16}{99}-\frac{5}{33}=\frac{1}{99}\)