K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
23 tháng 8 2018

\(L=0\)

23 tháng 8 2018

\(L=\sqrt{\left|40\sqrt{2}-57\right|}-\sqrt{\left|40\sqrt{2}-57\right|}\)

\(=\sqrt{40\sqrt{2}-57}-\sqrt{40\sqrt{2}-57}\)

\(=0\)

22 tháng 8 2020

a) \(E=\sqrt{\left|12\sqrt{5}-29\right|}-\sqrt{12\sqrt{5}+29}\)

\(\Leftrightarrow E^2=\left|12\sqrt{5}-29\right|-12\sqrt{5}-29\)

\(\Leftrightarrow E^2=29-12\sqrt{5}-12\sqrt{5}-29\)

\(\Leftrightarrow E^2=-24\sqrt{5}\)

\(\Leftrightarrow E=-2\sqrt{6\sqrt{5}}\)

b) Đặt \(F=\sqrt{\left|40\sqrt{2}-57\right|}-\sqrt{40\sqrt{2}+57}\)

\(\Leftrightarrow F^2=\left|40\sqrt{2}-57\right|-40\sqrt{2}-57\)

\(\Leftrightarrow F^2=57-40\sqrt{2}-40\sqrt{2}-57\)

\(\Leftrightarrow F^2=-80\sqrt{2}\)

\(\Leftrightarrow F=-4\sqrt{5\sqrt{2}}\)

18 tháng 9 2016

26, đặt bthuc là A suy ra A2=4+4+2\(\sqrt{16-\left(10+2\sqrt{5}\right)}\) suy ra A2=8+2(\(\sqrt{5}\) -1) suy ra A=\(\sqrt{6+2\sqrt{5}}\)=\(\sqrt{5}\)+1

40, tương tự

19 tháng 9 2016

thanks p nhìuvui

 

NV
25 tháng 6 2021

\(x=\dfrac{3\sqrt[3]{8-3\sqrt{5}}}{\sqrt[3]{57}}.\sqrt[3]{8+3\sqrt{5}}=\dfrac{3\sqrt[3]{\left(8-3\sqrt{5}\right)\left(8+3\sqrt[]{5}\right)}}{\sqrt[3]{57}}=\sqrt[3]{\dfrac{19}{57}}=\dfrac{1}{\sqrt[3]{3}}\)

\(y=\dfrac{\left(\sqrt[3]{3}+\sqrt[4]{2}\right)\left(\sqrt[3]{3}-\sqrt[4]{2}\right)}{\sqrt[3]{3}+\sqrt[4]{2}}+\dfrac{\left(\sqrt[4]{2}-\sqrt[3]{81}\right)\left(\sqrt[4]{2}+\sqrt[3]{81}\right)}{\sqrt[4]{2}-\sqrt[3]{81}}\)

\(=\sqrt[3]{3}-\sqrt[4]{2}+\sqrt[4]{2}+\sqrt[3]{81}=\sqrt[3]{3}+3\sqrt[3]{3}=4\sqrt[3]{3}\)

\(T=xy=\dfrac{4\sqrt[3]{3}}{\sqrt[3]{3}}=4\)

9 tháng 8 2016

\(\sqrt{5^2-2.5.4\sqrt{2}+\left(4\sqrt{2}\right)^2}-\sqrt{5^2+2.5.4\sqrt{2}+\left(4\sqrt{2}\right)^2}\)\(\)rồi sau đấy thành hằng đẳng thức, chắc bạn chỉ mắc chỗ phân tích vậy thôi

15 tháng 5 2020

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

25 tháng 6 2018

Giải:

1) \(\sqrt{21+12\sqrt{3}}\)

\(=\sqrt{12+9+12\sqrt{3}}\)

\(=\sqrt{12+12\sqrt{3}+9}\)

\(=\sqrt{\left(2\sqrt{3}\right)^2+2.2\sqrt{3}.3+3^2}\)

\(=\sqrt{\left(2\sqrt{3}+3\right)^2}\)

\(=2\sqrt{3}+3\)

Vậy ...

2) \(\sqrt{57-40\sqrt{2}}\)

\(=\sqrt{32+25-40\sqrt{2}}\)

\(=\sqrt{32-40\sqrt{2}+25}\)

\(=\sqrt{\left(4\sqrt{2}\right)^2-2.4\sqrt{2}.5+5^2}\)

\(=\sqrt{\left(4\sqrt{2}-5\right)^2}\)

\(=4\sqrt{2}-5\)

Vậy ...

3) \(\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(=\sqrt{5}+1+\sqrt{5}-1\)

\(=2\sqrt{5}\)

Vậy ...

25 tháng 6 2018

1) \(\sqrt{21+12\sqrt{3}}=\sqrt{3^2+2.3.2\sqrt{3}+\left(2\sqrt{3}\right)^2}=\sqrt{\left(3+2\sqrt{3}\right)^2}\)

                                                                       \(=\left|3+2\sqrt{3}\right|=3+2\sqrt{3}\)

2) \(\sqrt{57-40\sqrt{2}}=\sqrt{5^2-2.5.4\sqrt{2}+\left(4\sqrt{2}\right)^2}=\sqrt{\left(5-4\sqrt{2}\right)^2}\)

                                                                           \(=\left|5-4\sqrt{2}\right|=4\sqrt{2}-5\)

3) \(\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(=\left|\sqrt{5}+1\right|+\left|\sqrt{5}-1\right|\)

\(=\sqrt{5}+1+\sqrt{5}-1\)

\(=2\sqrt{5}\)

\(B=\dfrac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{x-9}\cdot\dfrac{\sqrt{x}-2+3}{3}\)

\(=\dfrac{-3\left(\sqrt{x}+3\right)}{x-9}\cdot\dfrac{\sqrt{x}+1}{3}=\dfrac{-\sqrt{x}-1}{\sqrt{x}-3}\)