Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(A=\left(\frac{1-x\sqrt{x}}{1-\sqrt{x}}+\sqrt{x}\right)\cdot\left(\frac{1-\sqrt{x}}{1-x}\right)^2\)
\(=\left(\frac{1-x\sqrt{x}+\sqrt{x}\left(1-\sqrt{x}\right)}{1-\sqrt{x}}\right)\cdot\left(\frac{1}{1+\sqrt{x}}\right)^2\)
\(=\frac{1-x\sqrt{x}+\sqrt{x}-x}{1-\sqrt{x}}\cdot\frac{1}{\left(1+\sqrt{x}\right)^2}\)
\(=\frac{-\left(x-1\right)\left(-1-\sqrt{x}\right)}{1-\sqrt{x}}\cdot\frac{1}{\left(1+\sqrt{x}\right)^2}\)
\(=\frac{\left(1+\sqrt{x}\right)\cdot\left(-1-\sqrt{x}\right)}{\left(1+\sqrt{x}\right)^2}\)
\(=\frac{-1\cdot\left(1+\sqrt{x}\right)^2}{\left(1+\sqrt{x}\right)^2}=-1\)
\(P=\dfrac{x\sqrt{x}-x-\sqrt{x}-2}{\left(x-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{\left(1-x^2\right)^2}{2}\)
\(P=\dfrac{\left(\sqrt{x}-2\right)\left(x-1\right)}{\left(x+\sqrt{x}+1\right)}.\dfrac{\left(1-x^2\right)\left(x-1\right)}{2}\)
\(P=\dfrac{\left(\sqrt{x}-2\right)\left(x-1\right)\left(1-x^2\right)}{2\left(x+\sqrt{x}+1\right)}\)
a) đk : \(x\ge0\) ; \(x\ne1\)
A=\(\left(\frac{2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}+1\right)}-\frac{x+1}{\left(\sqrt{x}+1\right)\left(x+1\right)}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)\)
\(=\left(\frac{-\left(\sqrt{x}-1\right)^2}{\left(x+1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)\) \(=\frac{1-\sqrt{x}}{x+1}\)
b) đk : \(x\ne0;x\ne1\)
B=\(\left(\frac{\left(\sqrt{x}-1\right)^2-\left(\sqrt{x}+1\right)^2}{x-1}\right):\left(\frac{1-x}{2\sqrt{x}}\right)^2\) \(=\left(\frac{-2\sqrt{x}}{x-1}\right):\left(\frac{1-x}{2\sqrt{x}}\right)^2\) \(=\frac{-4x}{\left(x-1\right)^3}\)
a, Với \(x\ge0;x\ne1\)
\(Q=\left(\frac{x-1}{\sqrt{x}-1}-\frac{x\sqrt{x}-1}{x-1}\right):\left(\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}+\frac{\sqrt{x}}{\sqrt{x}+1}\right)\)
\(=\left(\sqrt{x}+1-\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x-1}\right):\left(\frac{x-\sqrt{x}+1}{\sqrt{x}+1}\right)\)
\(=\left(\sqrt{x}+1-\frac{x+\sqrt{x}+1}{\sqrt{x}+1}\right):\left(\frac{x-\sqrt{x}+1}{\sqrt{x}+1}\right)\)
\(=\left(\frac{x+2\sqrt{x}+1-x-\sqrt{x}-1}{\sqrt{x}+1}\right):\left(\frac{x-\sqrt{x}+1}{\sqrt{x}+1}\right)\)
\(=\frac{\sqrt{x}}{x-\sqrt{x}+1}\)
\(P=\frac{2}{\sqrt{x}-1}+\frac{2\left(\sqrt{x}+1\right)}{x+\sqrt{x}+1}+\frac{x-10\sqrt{x}+3}{\sqrt{x^3}-1}\)
\(=\frac{2\left(x+\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)+x-10\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\frac{2x+2\sqrt{x}+2+2x-2+x-10\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\frac{5x-8\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}-1\right)\left(5\sqrt{x}-3\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\frac{5\sqrt{x}-3}{x+\sqrt{x}+1}\)
Với \(x\ge0;x\ne1\), ta có:
\(P=\frac{2}{\sqrt{x}-1}+\frac{2.\left(\sqrt{x}+1\right)}{x+\sqrt{x}+1}+\frac{x-10\sqrt{x}+3}{\sqrt{x^3}-1}\)
\(P=\frac{2.\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right).\left(x+\sqrt{x}+1\right)}+\frac{2.\left(\sqrt{x}+1\right).\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right).\left(x+\sqrt{x}+1\right)}+\frac{x-10\sqrt{x}+3}{\left(\sqrt{x}-1\right).\left(x+\sqrt{x}+1\right)}\)
\(P=\frac{2x+2\sqrt{x}+2+2.\left(x-1\right)+x-10\sqrt{x}+3}{\left(\sqrt{x}-1\right).\left(x+\sqrt{x}+1\right)}\)
\(P=\frac{3x-8\sqrt{x}+5+2x-2}{\left(\sqrt{x}-1\right).\left(x+\sqrt{x}+1\right)}\)
\(P=\frac{5x-\sqrt{8x}+3}{\left(\sqrt{x}-1\right).\left(x+\sqrt{x}+1\right)}\)
\(P=\frac{5x-5\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}-1\right).\left(x+\sqrt{x}+1\right)}\)
\(P=\frac{\left(\sqrt{x}-1\right).\left(5\sqrt{x}-3\right)}{\left(\sqrt{x}-1\right).\left(x+\sqrt{x}+1\right)}=\frac{5\sqrt{x}-3}{x+\sqrt{x}+1}\)
Vậy với \(x\ge0;x\ne1\) ta có: \(P=\frac{5\sqrt{x}-3}{x+\sqrt{x}+1}\)
Bài 1:
a) \(\frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1}\)
\(=\frac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}-\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)
\(=\frac{2\left(\sqrt{3}+1\right)}{2}-\frac{2\left(\sqrt{3}-1\right)}{2}\)
\(=\sqrt{3}+1-\left(\sqrt{3}-1\right)=2\)
b) \(\frac{2}{5-\sqrt{3}}+\frac{3}{\sqrt{6}+\sqrt{3}}\)
\(=\frac{2\left(5+\sqrt{3}\right)}{\left(5-\sqrt{3}\right)\left(5+\sqrt{3}\right)}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{\left(\sqrt{6}+\sqrt{3}\right)\left(\sqrt{6}-\sqrt{3}\right)}\)
\(=\frac{2\left(5+\sqrt{3}\right)}{2}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{3}\)
\(=5+\sqrt{3}+\sqrt{6}-\sqrt{3}=5+\sqrt{6}\)
c) ĐK: \(a\ge0;a\ne1\)
\(\left(1+\frac{a+\sqrt{a}}{1+\sqrt{a}}\right).\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)+a\)
\(=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{1+\sqrt{a}}\right).\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)+a\)
\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)+a\)
\(=1-a+a=1\)
\(\(b)\frac{\sqrt{a}+a\sqrt{b}-\sqrt{b}-b\sqrt{a}}{ab-1}\left(a,b\ge0;a,b\ne1\right)\)\)
\(\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)+\left(a\sqrt{b}-b\sqrt{a}\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab+1}\right)}\)\)
\(\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)+\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}\)\)
\(\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{ab}+1\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}\)\)
\(\(=\frac{\sqrt{a}-\sqrt{b}}{\left(\sqrt{ab}-1\right)}\left(a,b\ge0.a,b\ne1\right)\)\)
_Minh ngụy_
\(\(c)\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)\)( tự ghi điều kiện )
\(\(=\frac{x\sqrt{x}+y\sqrt{y}-\left(\sqrt{x}-\sqrt{y}\right)^2.\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)\)
\(\(=\frac{x\sqrt{x}+y\sqrt{y}-\left(x\sqrt{x}+x\sqrt{y}-2x\sqrt{y}-2y\sqrt{x}+y\sqrt{x}+y\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)\)
\(\(=\frac{x\sqrt{y}+y\sqrt{x}}{\sqrt{x}+\sqrt{y}}\)\)( phá ngoặc và tính )
\(\(=\frac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}=\sqrt{xy}\)\)
_Minh ngụy_
Bài làm
Rút gọn
\(\left(\frac{1}{\sqrt{x}-1}-\frac{\sqrt{x}}{1-x}\right)\cdot\frac{x-\sqrt{x}}{2\sqrt{x}+1}\)
\(=\left(\frac{1}{\sqrt{x}-1}+\frac{\sqrt{x}}{x-1}\right)\cdot\frac{\sqrt{x}(\sqrt{x}-1)}{2\sqrt{x}+1}\)
\(=\left(\frac{\sqrt{x}+1}{(\sqrt{x}-1)\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\cdot\frac{\sqrt{x}(\sqrt{x}-1)}{2\sqrt{x}+1}\)
\(=\frac{2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{2\sqrt{x}+1}\)
\(=\frac{\sqrt{x}}{\sqrt{x}+1}\)
Tính:
\(\frac{3-\sqrt{3}}{\sqrt{3}+2}+\frac{\sqrt{3}}{\sqrt{3}-2}+\frac{21}{\sqrt{3}}\)
\(=\frac{3-\sqrt{3}}{\sqrt{3}+2}+\frac{\sqrt{3}}{\sqrt{3}-2}+\frac{7\sqrt{3}\cdot\sqrt{3}}{\sqrt{3}}\)
\(=\frac{3-\sqrt{3}}{\sqrt{3}+2}+\frac{\sqrt{3}}{\sqrt{3}-2}+7\sqrt{3}\)
\(=\frac{\left(3-\sqrt{3}\right)\left(\sqrt{3}-2\right)}{\left(\sqrt{3}+2\right)\left(\sqrt{3}-2\right)}+\frac{\sqrt{3}\left(\sqrt{3}+2\right)}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}+7\sqrt{3}\)
\(=\frac{3\sqrt{3}-3-6+2\sqrt{3}}{\left(\sqrt{3}+2\right)\left(\sqrt{3}-2\right)}+\frac{3+2\sqrt{3}}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}+7\sqrt{3}\)
\(=\frac{3\sqrt{3}-3-6+2\sqrt{3}+3+2\sqrt{3}}{3-4}+7\sqrt{3}\)
\(=\frac{7\sqrt{3}-6}{-1}+7\sqrt{3}\)
\(=6-7\sqrt{3}+7\sqrt{3}\)
\(=6\)
Bài làm
\(\sqrt{42-10\sqrt{17}}+\sqrt{\left(\sqrt{17}-\sqrt{16}\right)^2}\)
\(=\sqrt{42-10\sqrt{17}}+\left|\sqrt{17}-\sqrt{16}\right|\)
\(=\sqrt{25-10\sqrt{17}+17}+\sqrt{17}-\sqrt{16}\)
\(=\sqrt{\left(5-\sqrt{17}\right)^2}+\sqrt{17}-\sqrt{16}\)
\(=\left|5-\sqrt{17}\right|+\sqrt{17}-\sqrt{16}\)
\(=5-\sqrt{17}+\sqrt{17}-\sqrt{16}\)
\(=5-4\)
\(=1\)