\(C=\left[\left(1+\dfrac{1}{x}\right)\cdot\dfrac{2}{x^3+3x^2+3x+1}+\left(1+\dfr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2017

\(a,2\left(5x+1\right)-7\left(3x-2\right)=4\left(2x-1\right)+3\left(2-x\right)\)

\(\Leftrightarrow10x+2-21x+14=8x-4+6-3x\)

\(\Leftrightarrow-16x=-14\)

\(\Rightarrow x=\dfrac{7}{8}\)

\(b,-4\left(\dfrac{1}{2}x-3\right)+\dfrac{7}{2}\left(2x-1\right)+x=5x\left(1-x\right)\)

\(\Leftrightarrow-2x+12+7x-\dfrac{7}{2}+x=5x-5x^2\)

\(\Leftrightarrow5x^2+x+\dfrac{17}{2}=0\)

Cái này không biết tách kiểu gì cho vừa nên bạn nhấn máy tính nhé

Mode 5 3 rồi lần lượt điền vào theo thứ tự trên thì

\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{10}+\dfrac{13i}{10}\\x=-\dfrac{1}{10}-\dfrac{13i}{10}\end{matrix}\right.\)

8 tháng 7 2017

an thế nào hả bạn mk ko có bt an hộ mk đi limdim

\(=\dfrac{x^2-x+1-3+3x+3}{\left(x+1\right)\left(x^2-x+1\right)}\cdot\dfrac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+2\right)}-\dfrac{2x-2}{x\left(x+2\right)}\)

\(=\dfrac{x^2+2x+1}{x+1}\cdot\dfrac{3}{\left(x+1\right)\left(x+2\right)}-\dfrac{2x-2}{x\left(x+2\right)}\)

\(=\dfrac{3}{x+2}-\dfrac{2x-2}{x\left(x+2\right)}=\dfrac{3x-2x+2}{x\left(x+2\right)}=\dfrac{1}{x}\)

23 tháng 1 2018

pt nào cho thì mới biết chứ bạn

12 tháng 7 2017

\(a,\left(2x+1\right)^2-3x^2+4=\left(1-x\right)\left(1+x\right)\)

\(\Leftrightarrow4x^2+4x+1-3x^2+4=1-x^2\)

\(\Leftrightarrow4x^2+4x+1-3x^2+4-1+x^2=0\)

\(\Leftrightarrow2x^2+4x+4=0\)

\(\Leftrightarrow2\left(x^2+2x+1\right)+2=0\)

\(\Leftrightarrow2\left(x+1\right)^2=-2\)

\(\Leftrightarrow\left(x+1\right)^2=-1\Rightarrow\) pt vô nghiệm

\(b,\left(4x-3\right)\left(4x+3\right)-2\left(x+2\right)^2=14x^2\)

\(\Leftrightarrow16x^2-9-2\left(x^2+4x+4\right)-14x^2=0\)

\(\Leftrightarrow16x^2-9-2x^2-8x-8-14x^2=0\)

\(\Leftrightarrow-8x-17=0\)

\(\Leftrightarrow-8x=17\)

\(\Leftrightarrow x=\dfrac{-17}{8}\)

\(c,\left(2x-1\right)\left(x+1\right)-x^2+1=\dfrac{1}{2}\left(x-1\right)^2\)

\(\Leftrightarrow2x^2+2x-x-1-x^2+1=\dfrac{1}{2}\left(x^2-2x+1\right)\)

\(\Leftrightarrow2x^2+2x-x-1-x^2+1-\dfrac{1}{2}x^2+x-\dfrac{1}{2}=0\)\(\Leftrightarrow\dfrac{1}{2}x^2+2x-\dfrac{1}{2}=0\)

\(\Leftrightarrow\dfrac{1}{2}\left(x^2+4x+4\right)-\dfrac{5}{2}=0\)

\(\Leftrightarrow\dfrac{1}{2}\left(x+2\right)^2=\dfrac{5}{2}\)

\(\Rightarrow\left(x+2\right)^2=5\)

\(\Rightarrow\left[{}\begin{matrix}x+2=-\sqrt{5}\\x+2=\sqrt{5}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\sqrt{5}-2\\x=\sqrt{5}-2\end{matrix}\right.\)

12 tháng 7 2017

a) \(\left(2x+1\right)^2-3x^2+4=\left(1-x\right)\left(1+x\right)\)

\(\Leftrightarrow4x^2+4x+1-3x^2+4=1-x^2\)

\(\Leftrightarrow4x^2+4x+1-3x^2+4-1+x^2=0\)

\(\Leftrightarrow2x^2+4x+4=0\Leftrightarrow\left(\sqrt{2}x\right)^2+2.\sqrt{2}.\sqrt{2}x+\left(\sqrt{2}\right)^2+2=0\) \(\Leftrightarrow\left(\sqrt{2}x+\sqrt{2}\right)^2+2=0\)

ta có : \(\left(\sqrt{2}x+\sqrt{2}\right)^2\ge0\Rightarrow\left(\sqrt{2}x+\sqrt{2}\right)^2+2\ge2>0\forall x\)

\(\Rightarrow\) phương trình vô nghiệm

vậy phương trình vô nghiệm

b) \(\left(4x-3\right)\left(4x+3\right)-2\left(x+2\right)^2=14x^2\)

\(\Leftrightarrow16x^2-9-2\left(x^2+4x+4\right)=14x^2\)

\(\Leftrightarrow16x^2-9-2x^2-8x-8=14x^2\)

\(\Leftrightarrow16x^2-9-2x^2-8x-8-14x^2=0\)

\(\Leftrightarrow-8x-17=0\Leftrightarrow-8x=17\Leftrightarrow x=\dfrac{-17}{8}\)

vậy \(x=\dfrac{-17}{8}\)

c) \(\left(2x-1\right)\left(x+1\right)-x^2+1=\dfrac{1}{2}\left(x-1\right)^2\)

\(\Leftrightarrow2x^2+2x-x-1-x^2+1=\dfrac{1}{2}\left(x^2-2x+1\right)\)

\(\Leftrightarrow2x^2+2x-x-1-x^2+1=\dfrac{1}{2}x^2-x+\dfrac{1}{2}\)

\(\Leftrightarrow2x^2+2x-x-1-x^2+1-\dfrac{1}{2}x^2+x-\dfrac{1}{2}=0\)

\(\Leftrightarrow\dfrac{1}{2}x^2+2x-\dfrac{1}{2}=0\Leftrightarrow\left(\dfrac{\sqrt{2}}{2}x\right)^2+2.\sqrt{2}.\dfrac{\sqrt{2}}{2}x+\left(\sqrt{2}\right)^2-\dfrac{5}{2}=0\)

\(\Leftrightarrow\left(\dfrac{\sqrt{2}}{2}x+\sqrt{2}\right)^2-\dfrac{5}{2}=0\Leftrightarrow\left(\dfrac{\sqrt{2}}{2}x+\sqrt{2}\right)^2=\dfrac{5}{2}\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{\sqrt{2}}{2}x+\sqrt{2}=\sqrt{\dfrac{5}{2}}\\\dfrac{\sqrt{2}}{2}x+\sqrt{2}=-\sqrt{\dfrac{5}{2}}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{\sqrt{2}}{2}x=\sqrt{\dfrac{5}{2}}-\sqrt{2}=\dfrac{\sqrt{10}-2\sqrt{2}}{2}\\\dfrac{\sqrt{2}}{2}x=-\sqrt{\dfrac{5}{2}}-\sqrt{2}=-\dfrac{\sqrt{10}+2\sqrt{2}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-2+\sqrt{5}\\x=-2-\sqrt{5}\end{matrix}\right.\)

vậy \(x=-2+\sqrt{5};x=-2-\sqrt{5}\)