Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=2\sqrt{8}-3\sqrt{32}+\sqrt{50}\)
\(A=2\sqrt{4.2}-3\sqrt{16.2}+\sqrt{25.2}\)
\(A=2.2\sqrt{2}-3.4\sqrt{2}+5\sqrt{2}\)
\(A=4\sqrt{2}-12\sqrt{2}+5\sqrt{2}\)
\(A=\left(4-12+5\right)\sqrt{2}\)
\(A=-3\sqrt{2}\)
b) \(B=\sqrt{12}+4\sqrt{27}-3\sqrt{48}\)
\(B=\sqrt{4.3}+4\sqrt{9.3}-3\sqrt{16.3}\)
\(B=2\sqrt{3}+4.3\sqrt{3}-3.4\sqrt{3}\)
\(B=2\sqrt{3}\)
c) \(C=\sqrt{20a}+4\sqrt{45a}-2\sqrt{125a}\left(a\ge0\right)\)
\(C=\sqrt{4.5a}+4\sqrt{9.5a}-2\sqrt{25.5a}\)
\(C=2\sqrt{5a}+4.3\sqrt{5a}-2.5\sqrt{5a}\)
\(C=2\sqrt{5a}+12\sqrt{5a}-10\sqrt{5a}\)
\(C=\left(2+12-10\right)\sqrt{5a}\)
\(C=4\sqrt{5a}\)
a) ta có \(2\sqrt{8}=2\sqrt{4.2}=4\sqrt{2},3\sqrt{32}=3\sqrt{16.2}=12\sqrt{2},\sqrt{50}=\sqrt{25.2}=5\sqrt{2}\) \(\Rightarrow A=4\sqrt{2}-12\sqrt{2}+5\sqrt{2}=-3\sqrt{2}\) b) ta có \(\sqrt{12}=\sqrt{4.3}=2\sqrt{3},4\sqrt{27}=4\sqrt{9.3}=12\sqrt{3},3\sqrt{48}=3\sqrt{16.3}=12\sqrt{3}\Rightarrow B=2\sqrt{3}+12\sqrt{3}-12\sqrt{3}=26\sqrt{3}\)c) ta có \(\sqrt{20a}=\sqrt{4.5a}=2\sqrt{5a},4\sqrt{45a}=4\sqrt{9.5a}=12\sqrt{5a},2\sqrt{125a}=2\sqrt{25.5a}=10\sqrt{5a}\Rightarrow C=2\sqrt{5a}+12\sqrt{5a}-10\sqrt{5a}=4\sqrt{5a}\)
5 .\(\frac{x}{\sqrt{2\left(y^2+z^2\right)-x^2}}=\frac{\sqrt{3}x^2}{\sqrt{3}x\sqrt{2\left(y^2+z^2\right)-x^2}}\ge\frac{\sqrt{3}x^2}{x^2+y^2+z^2}\)
TT=>VT2>=VP2
6.\(1+\sqrt{y-1}\ge1\)
\(\frac{1}{y^2}-\left(x+z\right)^2\le1\)
=>VT1>=VP1
10b pt1\(\Leftrightarrow\left(y-3x\right)\left(y^2-y+1\right)=0\)
Sửa đề pt 2 thành căn x
\(\hept{\begin{cases}\sqrt{x}+\sqrt{32-x}-y^2=-3\\\sqrt{x}+\sqrt{32-x}+6y=24\end{cases}}\left(ĐKXĐ:x\ge0;x\ne32\right)\)
Đặt \(\sqrt{x}+\sqrt{32-x}\Rightarrow t\left(t\ge0\right)\)
Hệ phương trình trên trở thành
\(\hept{\begin{cases}t-y^2=-3\\t+6y=24\end{cases}}\)\(< =>\hept{\begin{cases}6y-21-y^2=0\left(+\right)\\t=6y-24\left(++\right)\end{cases}}\)
\(\left(+\right)< =>\Delta=6^2-4\left(-21\right)=120>0\)
\(< =>\orbr{\begin{cases}y=\frac{-6+\sqrt{120}}{-2}=3-\sqrt{30}\\y=\frac{-6-\sqrt{120}}{-2}=3+\sqrt{30}\end{cases}}\)
Với \(y=3-\sqrt{30}\)thì \(\left(++\right)< =>t=6\left(3-\sqrt{30}\right)-24\)
\(< =>t=18-6\sqrt{30}-24=-6-6\sqrt{30}\)
Khi đó \(x+\sqrt{32-x}=-6-6\sqrt{30}\)
\(< =>x^2+32-x+2\sqrt{32x-x^2}=36+1080+72\sqrt{30}\)
Đến đây bạn giải delta là ra !
Với \(y=3+\sqrt{30}\)thì \(t=6\left(3+\sqrt{30}\right)-24\)
\(< =>t=6\sqrt{30}-6=6\left(\sqrt{30}-1\right)\)
Khi đó : \(\sqrt{x}+\sqrt{32-x}=6\left(\sqrt{30}-1\right)\)
\(< =>x^2+32-x+2\sqrt{32x-x^2}=36\left(30-2\sqrt{30}+1\right)\)
Đến đây bạn cũng dùng delta là ra nhé !
Vậy bạn đối chiếu đk là xong
Cộng 2 phương trình lại
VT có:\(\sqrt{x}+\sqrt{32-x}\le8;\sqrt[4]{x}+\sqrt[4]{32-x}\le4\) nên VT\(\le\)12
VP có:\(y^2-6y+21=\left(y-3\right)^2+12\ge12\)
Nghiệm \(x=16;y=3\)
điều kiện: 0=<x =< 32
hệ đã cho tương đương với: \(\hept{\begin{cases}\left(\sqrt{x}+\sqrt{32-x}\right)+\left(\sqrt[4]{x}+\sqrt[4]{32-x}\right)=y^2-6y+21\\\sqrt{x}+\sqrt[4]{32-x}=y^2-3\end{cases}}\)
theo bất đẳng thức Bunhiacopsky ta có:
\(\left(\sqrt{x}+\sqrt{32-x}\right)^2\le\left(1^2+1^2\right)\left(x+32-x\right)=64\)
\(\Rightarrow\sqrt{x}+\sqrt{32-x}\le8\)
\(\left(\sqrt[4]{x}+\sqrt[4]{32-x}\right)^4\le\left[2\left(\sqrt{x}+\sqrt{32-x}\right)\right]^2\le256\Rightarrow\sqrt[4]{x}+\sqrt[4]{32-x}\le4\)
\(\Rightarrow\left(\sqrt{x}+\sqrt{32-x}\right)+\left(\sqrt[4]{x}+\sqrt[4]{32-x}\right)\le12\)
mặt khác \(y^2-6y+21=\left(y-3\right)^2+12\ge12\)
đẳng thức xảy ra khi x=16 và y=3 (tm)
a: \(A=\left(1-\sqrt{7}\right)\cdot\left(1+\sqrt{7}\right)=1-7=-6\)
b: \(B=3\sqrt{3}+8\sqrt{3}-15\sqrt{3}=-4\sqrt{3}\)
c: \(C=4\sqrt{2}-5\sqrt{2}+3\sqrt{2}=2\sqrt{2}\)
a/ \(\hept{\begin{cases}\sqrt{xy}+\sqrt{1-y}=\sqrt{y}\left(1\right)\\2\sqrt{xy-y}-\sqrt{y}=-1\left(2\right)\end{cases}}\)
Điều kiện: \(\hept{\begin{cases}x\ge1\\0\le y\le1\end{cases}}\)
Xét phương trình (1) ta đễ thấy y = 0 không phải là nghiệm:
\(\sqrt{xy}+\sqrt{1-y}=\sqrt{y}\)
\(\Leftrightarrow\sqrt{y}\left(1-\sqrt{x}\right)=\sqrt{1-y}\)
\(\Leftrightarrow1-\sqrt{x}=\frac{\sqrt{1-y}}{\sqrt{y}}\)
\(\Rightarrow1-\sqrt{x}\ge0\)
\(\Leftrightarrow x\le1\)
Kết hợp với điều kiện ta được x = 1 thê vô PT (2) ta được y = 1
b/ \(\hept{\begin{cases}\sqrt{\frac{2x}{y}}+\sqrt{\frac{2y}{x}}=3\left(1\right)\\x-y+xy=3\left(2\right)\end{cases}}\)
Xét pt (1) ta có
\(\sqrt{\frac{2x}{y}}+\sqrt{\frac{2y}{x}}=3\)
Đặt \(\sqrt{\frac{x}{y}}=a\left(a>0\right)\)thì pt (1) thành
\(\sqrt{2}a+\frac{\sqrt{2}}{a}=3\)
\(\Leftrightarrow a^2+1=\frac{3}{\sqrt{2}}\)
Tới đây đơn giản rồi làm tiếp nhé
\(3\sqrt{3}+4\sqrt{12}-5\sqrt{27}=3\sqrt{3}+8\sqrt{2}-15\sqrt{3}=-4\sqrt{3}\)
\(\sqrt{32}-\sqrt{50}+\sqrt{18}=4\sqrt{2}-5\sqrt{2}+3\sqrt{2}=2\sqrt{2}\)
Hãy điền dấu phép tính sau
4 4 4= 6