K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2016

P=\(\sqrt{\frac{\sqrt{x}\left(x\sqrt{x}-1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\left(x\sqrt{x}+1\right)}{x-\sqrt{x}+1}+x+1}\)

  =\(\sqrt{\frac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}+x+1}\)

  =\(\sqrt{x-\sqrt{x}-x-\sqrt{x}+x+1}\)

  =\(\sqrt{x-2\sqrt{x}+1}\)

  =\(\sqrt{\left(\sqrt{x}-1\right)^2}\)

  =\(\sqrt{x}-1\)

25 tháng 7 2016

Với điều kiện  \(0\)\(\le x\le1\)ta có

P= \(\sqrt{\frac{\sqrt{x\left(x\sqrt{x-1}\right)}}{x+\sqrt{x}+1}-\sqrt{\frac{\sqrt{x\left(x\sqrt{x+1}\right)}}{x-\sqrt{x}+1}+x+1}}\)

sử dụng hằng đẳng thức bậc 3  : \(x^3\)\(y^3\)và \(x^3\)+  \(y^3\)

ta có P = \(\sqrt{\sqrt{x}\left(\sqrt{x}-1\right)-\sqrt{x}\left(\sqrt{x}+1\right)+x+1}\)\(\sqrt{x-2\sqrt{x}+1}=\)\(\sqrt{\left(\sqrt{x}-1\right)^2}\)=\(\left|\sqrt{x}-1\right|\)

P= \(1-\sqrt{x}\)

26 tháng 7 2016

mk nghĩ P=\(\sqrt{x}-1\) bạn ak

1 tháng 10 2016

Điều kiện xác định \(x\ge0\)

\(A=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{x^2+\sqrt{x}}{x-\sqrt{x}+1}=\frac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}\)

\(=x-\sqrt{x}-\left(x+\sqrt{x}\right)=-2\sqrt{x}\)

\(B=\frac{1}{3}-\sqrt{A+x+1}=\frac{1}{3}-\sqrt{x-2\sqrt{x}+1}=\frac{1}{3}-\sqrt{\left(\sqrt{x}-1\right)^2}=\frac{1}{3}-\left|\sqrt{x}-1\right|\)

\(=\frac{1}{3}-\left(1-\sqrt{x}\right)=\sqrt{x}-\frac{2}{3}\) (vì \(0\le x\le1\))

27 tháng 11 2019

\(\hept{\begin{cases}-1\le x\le1\\2-\sqrt{1-x^2}\end{cases}\Rightarrow-1\le x\le1\left(^∗\right)}\)

Đặt : \(\hept{\begin{cases}\sqrt{1+x}=a\\\sqrt{1-x}=b\end{cases}\Rightarrow\hept{\begin{cases}a^2+b^2=2\\a,b\ge0\end{cases}}}\)

A tồn tại mọi x thuộc ( * )

\(A=\frac{\sqrt{1-ab}\left(a^3+b^3\right)}{2-ab}=\frac{\sqrt{a^2-2ab+b^2}\left(a+b\right)\left(a^2+b^2-ab\right)}{2-ab}\)

\(A=\frac{\sqrt{2}\sqrt{\left(a-b\right)^2}\left(a+b\right)\left(2-ab\right)}{\left(2-ab\right)}\) . Vói đk ( \(I\)\(A=\frac{\sqrt{2}}{2}!a-b!\left(a+b\right)\)

\(\orbr{\begin{cases}\hept{\begin{cases}a\ge b\Leftrightarrow0\le x\le1\\A=\frac{\sqrt{2}}{2}\left[\left(1+x\right)-\left(1-x\right)\right]=\frac{\sqrt{2}}{2}x\end{cases}}\\\hept{\begin{cases}a< b\Leftrightarrow-1\le x< 0\\A=\frac{-\sqrt{2}}{2}\left[\left(1+x\right)-\left(1-x\right)\right]=\frac{-\sqrt{2}}{2}x\end{cases}}\end{cases}}\)

\(\Rightarrow A=\frac{\sqrt{2}}{2}!x!\) . Với x thỏa mãn điều kiện ( * )