Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=\(\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
=\(\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
=...=2^32-1
\(M=1.\left(a+b\right)\left(a^2+b^2\right).......\)
\(=\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)....\)
\(=\left(a^2-b^2\right)\left(a^2+b^2\right)....\)
\(=\left(a^4-b^4\right)\left(a^4+b^4\right)......\)
\(=\left(a^8-b^8\right)\left(a^8+b^8\right)\left(a^{16}+b^{16}\right)\)
\(=\left(a^{16}-b^{16}\right)\left(a^{16}+b^{16}\right)\)
\(=a^{32}-b^{32}\)
\(3\left(2^2+1\right).\left(2^4+1\right)...\left(2^{64}+1\right)+1\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1\)
\(=\left(2^4-1\right)\left(2^4+1\right)....\left(2^{64}+1\right)+1\)
\(=\left(2^8-1\right).\left(2^8+1\right)\left(2^{16}+1\right)....\left(2^{64}+1\right)+1\)
\(=\left(2^{64}-1\right).\left(2^{64}+1\right)+1\)
\(=2^{64}-1+1=2^{64}\)
Vậy : \(3\left(2^2+1\right).\left(2^4+1\right)...\left(2^{64}+1\right)+1=2^{64}\)
1)a)=>x2+y2+2xy-4(x2-y2-2xy)
=>x2+y2+2xy-4.x2+4y2+8xy
=>-3.x2+5y2+10xy
\(2x^2\left(x-2\right)-2x\left(x-1\right)\left(x+1\right)=2x^3-4x^2-2x^3+2x=-4x^2+2x=-2x\left(2x-1\right)\)
\(2x^2\left(x-2\right)-2x\left(x-1\right)\left(x+1\right)\)
\(=2x^3-4x^2-2x\left(x^2-1\right)\)
\(=2x^3-4x^2-2x^3+2x=-4x^2+2x\)