K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2017

M = 1/(x+1).(x+2) + 1/(x+2).(x+3) + 1/(x+3).(x+4) + 1/(x+4).(x+5) + 1/x+5

    = 1/x+1 - 1/x+2 + 1/x+2 - 1/x+3 + 1/x+3 - 1/x+4 + 1/x+4 - 1/x+5 + 1/x+5 = 1/x+1

k mk nha

11 tháng 10 2020

Bài 1:

\(\left(x-y+z\right)^2+\left(z-y\right)^2+\left(x-y+z\right)\left(2y-2z\right)\)

\(=\left(x-y+z\right)^2+2\left(x-y+z\right)\left(y-z\right)+\left(y-z\right)^2\)

\(=\left(x-y+z+y-z\right)^2\)

\(=x^2\)

Bài 2:

đk: \(x\ne\left\{0;-1;-2;-3;-4;-5\right\}\)

Xét BT trái ta có:

\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+...+\frac{1}{\left(x+4\right)\left(x+5\right)}\)

\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+4}-\frac{1}{x+5}\)

\(=\frac{1}{x}-\frac{1}{x+5}\)

\(=\frac{5}{x\left(x+5\right)}=\frac{5}{x^2+5x}\)

GT của biểu thức lớn sẽ là: \(\frac{5}{x^2+5x}\cdot\frac{x^2+5x}{5}=1\) không phụ thuộc vào biến

=> đpcm

11 tháng 10 2020

Bài 1.

( x - y + z ) + ( z - y )2 + ( x - y + z )( 2y - 2z )

= ( x - y + z ) - 2( x - y + z )( z - y ) + ( z - y )2

= [ ( x - y + z ) - ( z - y ) ]2 

= ( x - y + z - z + y )2

= x2

Bài 2. ĐKXĐ tự ghi nhé :))

\(\left(\frac{1}{x^2+x}+\frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+\frac{1}{x^2+9x+20}\right)\times\left(\frac{x^2+5x}{5}\right)\)

\(=\left(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}\right)\times\left(\frac{x\left(x+5\right)}{5}\right)\)

\(=\left(\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+4}-\frac{1}{x+5}\right)\times\left(\frac{x\left(x+5\right)}{5}\right)\)

\(=\left(\frac{1}{x}-\frac{1}{x+5}\right)\times\frac{x\left(x+5\right)}{5}\)

\(=\left(\frac{x+5}{x\left(x+5\right)}-\frac{x}{\left(x+5\right)}\right)\times\frac{x\left(x+5\right)}{5}\)

\(=\frac{x+5-x}{x\left(x+5\right)}\times\frac{x\left(x+5\right)}{5}\)

\(=\frac{5}{x\left(x+5\right)}\times\frac{x\left(x+5\right)}{5}=1\)

=> đpcm

A)\(ĐKXĐ:x\ne1;2;3;4;5\)

B)Ta có:\(P=\frac{1}{x^2-x}+\frac{1}{x^2-3x+2}+\frac{1}{x^2-5x+6}+\frac{1}{x^2-7x+12}+\frac{1}{x^2-9x+20}\)

\(=\frac{1}{x\left(x-1\right)}+\frac{1}{\left(x^2-x\right)-\left(2x-2\right)}+\frac{1}{\left(x^2-2x\right)-\left(3x-6\right)}+\frac{1}{\left(x^2-3x\right)-\left(4x-12\right)}+\frac{1}{\left(x^2-4x\right)-\left(5x-20\right)}\)

\(=\frac{1}{x\left(x-1\right)}+\frac{1}{x\left(x-1\right)-2\left(x-1\right)}+\frac{1}{x\left(x-2\right)-3\left(x-2\right)}+\frac{1}{x\left(x-3\right)-4\left(x-3\right)}+\frac{1}{x\left(x-4\right)-5\left(x-4\right)}\)

\(=\frac{1}{x\left(x-1\right)}+\frac{1}{\left(x-1\right)\left(x-2\right)}+\frac{1}{\left(x-2\right)\left(x-3\right)}+\frac{1}{\left(x-3\right)\left(x-4\right)}+\frac{1}{\left(x-4\right)\left(x-5\right)}\)

\(=\frac{1}{x}-\frac{1}{x-1}+\frac{1}{x-1}-\frac{1}{x-2}+\frac{1}{x-2}-\frac{1}{x-3}+\frac{1}{x-3}-\frac{1}{x-4}+\frac{1}{x-4}-\frac{1}{x-5}=\frac{1}{x}-\frac{1}{x-5}=\frac{-5}{x\left(x-5\right)}\)

nhầm

\(\frac{1}{\left(x-1\right)x}+\frac{1}{\left(x-1\right)\left(x-2\right)}+\frac{1}{\left(x-3\right)\left(x-2\right)}+\frac{1}{\left(x-4\right)\left(x-3\right)}+\frac{1}{\left(x-5\right)\left(x-4\right)}\)

\(=\frac{1}{x-1}-\frac{1}{x}+\frac{1}{x-2}-\frac{1}{x-1}+\frac{1}{x-3}-\frac{1}{x-2}+\frac{1}{x-4}-\frac{1}{x-3}+\frac{1}{x-5}-\frac{1}{x-4}=\frac{1}{x-5}-\frac{1}{x}=\frac{5}{\left(x-5\right)x}\)

Xin lỗi nha

9 tháng 2 2017

a/ ĐKXĐ ....

A=\(\frac{1}{x\left(x-1\right)}+\frac{1}{\left(x-1\right)\left(x-2\right)}+\frac{1}{\left(x-2\right)\left(x-3\right)}+\frac{1}{\left(x-3\right)\left(x-4\right)}+\frac{1}{\left(x-4\right)\left(x-5\right)}\)

=\(\frac{1}{x-1}-\frac{1}{x}+\frac{1}{x-2}-\frac{1}{x-1}+...+\frac{1}{x-5}-\frac{1}{x-4}\)

=\(\frac{1}{x}-\frac{1}{x-5}\)

=\(-\frac{5}{x^2-5x}\)

b/ \(x^3-x+2=0\Leftrightarrow\left(x+1\right)\left(\left(x-1\right)^2+1\right)=0\)

<=> x=-1, thay vào tính nốt

29 tháng 12 2015

\(A=\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}\)

\(A=\frac{1}{x+1}-\frac{1}{x+5}\)

\(A=\frac{4}{\left(x+1\right)\left(x+5\right)}\)

\(A=2\) suy ra \(\left(x+1\right)\left(x+5\right)=2\)

\(x^2+6x+5=2\)

\(x^2+6x+3=0\)

\(x=-3\pm\sqrt{6}\)

12 tháng 1 2018

\(ĐKXĐ:\)\(x\ne\left\{0;1;2;3;4;5\right\}\)

\(P=\frac{1}{x^2-x}+\frac{1}{x^2-3x+2}+\frac{1}{x^2-5x+6}+\frac{1}{x^2-7x+12}+\frac{1}{x^2-9x+20}\)

\(=\frac{1}{x\left(x-1\right)}+\frac{1}{\left(x-1\right)\left(x-2\right)}+\frac{1}{\left(x-2\right)\left(x-3\right)}+\frac{1}{\left(x-3\right)\left(x-4\right)}+\frac{1}{\left(x-4\right)\left(x-5\right)}\)

\(=\frac{1}{x-1}-\frac{1}{x}+\frac{1}{x-2}-\frac{1}{x-1}+\frac{1}{x-3}-\frac{1}{x-2}+\frac{1}{x-4}-\frac{1}{x-3}+\frac{1}{x-5}-\frac{1}{x-4}\)

\(=\frac{1}{x-5}-\frac{1}{x}\)

\(=\frac{5}{x\left(x-5\right)}\)

Ta có:     \(x^3-x^2+2=0\)

\(\Leftrightarrow\)\(\left(x+1\right)\left(x^2-2x+2\right)=0\)

Xét:    \(x^2-2x+2=\left(x-1\right)^2+1\)\(>0\)

\(\Rightarrow\)\(x+1=0\)

\(\Leftrightarrow\)\(x=-1\)(t/m)

Vậy   tại     \(x=-1\)  thì:

          \(P=\frac{5}{-1\left(-1-5\right)}=\frac{5}{6}\)

ĐKXĐ \(x\ne0,1,2,3,4,5\)

\(P=\frac{1}{x\left(x-1\right)}+\frac{1}{\left(x-1\right)\left(x-2\right)}+\frac{1}{\left(x-2\right)\left(x-3\right)}+\frac{1}{\left(x-3\right)\left(x-4\right)}+\frac{1}{\left(x-4\right)\left(x-5\right)}\)

\(P=\frac{1}{x-1}-\frac{1}{x}+\frac{1}{x-2}-\frac{1}{x-1}+...+\frac{1}{x-5}-\frac{1}{x-4}\)

\(P=\frac{1}{x-5}-\frac{1}{x}\)

\(P=\frac{5}{x\left(x-5\right)}\)

4 tháng 5 2019

ĐKXĐ:\(x\ne1;2;3;4;5\)

\(\Leftrightarrow\frac{1}{x^2-x-2x+2}+\frac{1}{x^2-2x-3x+6}+\frac{1}{x^2-3x-4x+12}+\frac{1}{x^2-4x-5x+20}=\frac{1}{15}\)

\(\Leftrightarrow\frac{1}{\left(x-1\right)\left(x-2\right)}+\frac{1}{\left(x-2\right)\left(x-3\right)}+\frac{1}{\left(x-3\right)\left(x-4\right)}+\frac{1}{\left(x-4\right)\left(x-5\right)}=\frac{1}{15}\)

\(\Leftrightarrow\frac{1}{x-1}-\frac{1}{x-2}+\frac{1}{x-2}-\frac{1}{x-3}+\frac{1}{x-3}-\frac{1}{x-4}+\frac{1}{x-4}-\frac{1}{x-5}=\frac{1}{15}\)

\(\Leftrightarrow\frac{1}{x-1}-\frac{1}{x-5}=\frac{1}{15}\)

\(\Leftrightarrow\frac{15\left(x-5\right)-15\left(x-1\right)}{15\left(x-1\right)\left(x-5\right)}=\frac{\left(x-1\right)\left(x-5\right)}{15\left(x-1\right)\left(x-5\right)}\)

\(\Rightarrow15x-75-15x+15=x^2-6x+5\)

\(\Leftrightarrow x^2-6x+65=0\)

\(\Leftrightarrow\left(x^2-6x+9\right)+56=0\)

\(\Leftrightarrow\left(x-3\right)^2=-56\) (Vô lý)

Vì bình phương một số không thể bằng âm

Vây \(S=\varnothing\)

14 tháng 4 2020

tao đéo biết

24 tháng 3 2020

Phép nhân và phép chia các đa thứcPhép nhân và phép chia các đa thức

28 tháng 7 2017

\(\Leftrightarrow\frac{1}{\left(x-1\right)\left(x-2\right)}+\frac{1}{\left(x-2\right)\left(x-3\right)}+\frac{1}{\left(x-3\right)\left(x-4\right)}+\frac{1}{\left(x-4\right)\left(x-5\right)}=\frac{1}{8}\)

\(\Leftrightarrow\frac{1}{x-1}-\frac{1}{x-2}+\frac{1}{x-2}-\frac{1}{x-3}+...+\frac{1}{x-4}-\frac{1}{x-5}=\frac{1}{8}\)

\(\Leftrightarrow\frac{1}{x-1}-\frac{1}{x-5}=\frac{1}{8}\)

\(\Leftrightarrow\frac{x-5-x+1}{\left(x-1\right)\left(x-5\right)}=\frac{1}{8}\)

\(\Leftrightarrow-4.8=x^2-6x+5\)

\(\Leftrightarrow x^2-6x+37=0\)

3 tháng 1 2018

bo tay