K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2019

nó là 2 hỗn số hay phép nhân vậy bạn

30 tháng 12 2022

\(=\dfrac{65\cdot22.4+x}{22.4}:\dfrac{27\cdot22.4+x}{22.4}=\dfrac{x+1456}{x+604.8}\)

a) Ta có: \(\dfrac{x^2}{y^2}:\sqrt{\dfrac{x^2}{y^4}}\)

\(=\dfrac{x^2}{y^2}:\dfrac{x}{y^2}\)

=x

b) Ta có: \(\sqrt{\dfrac{27\left(x-1\right)^2}{12}}+\dfrac{3}{2}-\left(x-2\right)\sqrt{\dfrac{50x^2}{8\left(x-2\right)^2}}\)

\(=\sqrt{\dfrac{9}{4}}\cdot\sqrt{\left(x-1\right)^2}+\dfrac{3}{2}-\left(x-2\right)\cdot\sqrt{\dfrac{25}{4}}\cdot\sqrt{\dfrac{x^2}{\left(x-2\right)^2}}\)

\(=\dfrac{3}{2}\cdot\left(x-1\right)+\dfrac{3}{2}-\left(x-2\right)\cdot\dfrac{5}{2}\cdot\dfrac{x}{2-x}\)

\(=\dfrac{3}{2}x-\dfrac{3}{2}+\dfrac{3}{2}-\dfrac{5}{2}\left(x-2\right)\cdot\dfrac{-x}{x-2}\)

\(=\dfrac{3}{2}x+\dfrac{5}{2}\cdot\left(x\right)\)

=4x

13 tháng 7 2021

em cảm ơn ạ yeu

10 tháng 11 2021

\(a,C=\dfrac{2x^2-x-x-1+2-x^2}{x-1}\left(x\ne1\right)\\ C=\dfrac{x^2-2x+1}{x-1}=\dfrac{\left(x-1\right)^2}{x-1}=x-1\\ b,D=\dfrac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\left(a>0;a\ne1\right)\\ D=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)

Có 

Câu 1:

Sửa đề: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)

Ta có: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)

\(=\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}+3\right)}+\dfrac{1}{\sqrt{x}+3}\right):\left(\dfrac{x+3\sqrt{x}-2\left(\sqrt{x}+3\right)+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\right)\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}:\dfrac{x+3\sqrt{x}-2\sqrt{x}-6+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{x+\sqrt{x}}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}=1\)

Câu 3: 

Ta có: \(Q=\left(\dfrac{a}{a-2\sqrt{a}}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{a-4\sqrt{a}+4}\)

\(=\left(\dfrac{a}{\sqrt{a}\left(\sqrt{a}-2\right)}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{\left(\sqrt{a}-2\right)^2}\)

\(=\dfrac{a+\sqrt{a}}{\sqrt{a}-2}\cdot\dfrac{\sqrt{a}-2}{\sqrt{a}+1}\cdot\dfrac{\sqrt{a}-2}{1}\)

\(=\sqrt{a}\left(\sqrt{a}-2\right)\)

\(=a-2\sqrt{a}\)

1: Ta có: \(P=\dfrac{x-\sqrt{x}}{x-9}+\dfrac{1}{\sqrt{x}+3}-\dfrac{1}{\sqrt{x}-3}\)

\(=\dfrac{x-\sqrt{x}+\sqrt{x}-3-\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{x-\sqrt{x}-6}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{\sqrt{x}+2}{\sqrt{x}+3}\)

2)

a) Thay \(x=\dfrac{9}{4}\) vào P, ta được:

\(P=\left(\dfrac{3}{2}+2\right):\left(\dfrac{3}{2}+3\right)=\dfrac{7}{2}:\dfrac{11}{2}=\dfrac{7}{11}\)

b) Ta có: \(x=\sqrt{27+10\sqrt{2}}-\sqrt{18+8\sqrt{2}}\)

\(=5+\sqrt{2}-4-\sqrt{2}\)

=1

Thay x=1 vào P, ta được:

\(P=\dfrac{1+2}{1+3}=\dfrac{3}{4}\)

24 tháng 5 2022

1.\(\sqrt{27}+\sqrt{48}-\sqrt{108}-\sqrt{12}=3\sqrt{3}+4\sqrt{3}-6\sqrt{3}-2\sqrt{3}=-\sqrt{3}\)

2.\(P=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}+1}\right).\dfrac{x-2\sqrt{x}+1}{2}\)

\(P=\left(\dfrac{\sqrt{x}+1-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\dfrac{\left(\sqrt{x}-1\right)^2}{2}\)

\(P=\dfrac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\left(\sqrt{x}-1\right)^2}{2}\)

\(P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

 

24 tháng 5 2022

\(a,\sqrt{27}+\sqrt{48}-\sqrt{108}-\sqrt{12}\\ =3\sqrt{3}+4\sqrt{3}-6\sqrt{3}-2\sqrt{3}\\ =-\sqrt{3}\)

\(b,P=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}+1}\right).\dfrac{x-2\sqrt{x}+1}{2}\\ =\dfrac{\left(\sqrt{x}+1\right)-\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-1\right)^2}{2}\\ =\dfrac{\sqrt{x}+1-\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-1\right)^2}{2}\\ =\dfrac{2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-1\right)^2}{2}\\ =\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

3 tháng 7 2023

`\sqrt{[27(x-1)^2]/12} +3/2 - (x - 2)\sqrt{[50x^2]/[8(x-2)^2]}`   `(1 < x < 2)`

`=\sqrt{[3(x-1)]^2 .3}/\sqrt{2^2 .3} + 3/2 - (x - 2) \sqrt{(5x)^2 . 2}/\sqrt{[2(x - 2)]^2 . 2}`

`=[3\sqrt{3}|x-1|]/[2\sqrt{3}]+3/2-(x-2)[5\sqrt{2}|x|]/[2\sqrt{2}|x-2|]`

`=[3(x-1)]/2+3/2-[5x(x-2)]/[2(2-x)]`   (Vì `1 < x < 2`)

`=3/2x - 3/2 + 3/2 + 5/2x`

`=4x`

3 tháng 7 2023

em cảm ơn ạ.

 

10 tháng 11 2021

a.\(A=\dfrac{x^2-4x+4}{x^3-2x^2-\left(4x-8\right)}=\dfrac{\left(x-2\right)^2}{x^2\left(x-2\right)-4\left(x-2\right)}=\dfrac{\left(x-2\right)^2}{\left(x^2-4\right)\left(x-2\right)}=\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}=\dfrac{1}{x+2}\)

 

10 tháng 11 2021

\(A=\dfrac{\left(x-2\right)^2}{x^2\left(x-2\right)-4\left(x-2\right)}\left(x\ne\pm2\right)\\ A=\dfrac{\left(x-2\right)^2}{\left(x-2\right)^2\left(x+2\right)}=\dfrac{1}{x+2}\\ B=\dfrac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\dfrac{4\sqrt{x}}{3}\left(x>0\right)\\ B=\dfrac{4\sqrt{x}\left(\sqrt{x}+1\right)}{3\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)

12 tháng 11 2021

5: \(=\dfrac{1}{x-y}\cdot x^3\cdot\left(x-y\right)^2=x^3\left(x-y\right)\)