K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2023

\(\dfrac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}\)
\(=\dfrac{2^{12}.3^{10}+2^9.3^9.2^3.3.5}{2^{12}.3^{12}-2^{11}.3^{11}}\)
\(=\dfrac{2^{12}.3^{10}+2^{12}.3^{10}.5}{2^{11}.3^{11}\left(2.3-1\right)}\)
\(=\dfrac{2^{12}.3^{10}\left(1+5\right)}{2^{11}.3^{11}.5}\)
\(=\dfrac{2^{12}.3^{10}.6}{2^{11}.3^{11}.5}=\dfrac{2.6}{3.5}=\dfrac{4}{5}\)

5 tháng 1 2023

Giải giúp em với mnbucminh

1 tháng 7 2015

\(\frac{2^{12}.3^{10}+2^9.3^9.2^3.3.5}{2^{12}.3^{12}-2^{11}.3^{11}}=\frac{2^{12}.3^{10}+2^{12}.3^{10}.5}{2^{12}.3^{12}-2^{11}.3^{11}}=\frac{2^{12}.3^{10}.\left(1+5\right)}{2^{11}.3^{11}.\left(6-1\right)}=\frac{2.6}{3.5}=\frac{4}{5}\)

7 tháng 1 2017

\(\frac{\left(2^2\right)^6.\left(3^2\right)^5+2^9.3^9.120}{\left(2^3\right)^4.3^{12}-2^{11}.3^{11}}\)=\(\frac{2^{12}.3^{10}+2^9.3^9.120}{2^{12}.3^{12}-2^{11}.3^{11}}\)=\(\frac{120}{3^2-2^3.3^3}\)=\(\frac{120}{9-8.27}\)=\(\frac{120}{-207}\)=\(\frac{-40}{69}\)

tk cho mk nhe

\(\frac{4^6.9^5+6^9.120}{-8^4.3^{12}-6^{11}}=\frac{\left(2^2\right)^6.\left(3^2\right)^5+\left(2.3\right)^9.2^3.3.5}{-\left(2^3\right)^4.3^{12}-\left(2.3\right)^{11}}=\frac{2^{12}.3^{10}+2^9.3^9.2^3.3.5}{-2^{12}.3^{12}-2^{11}.3^{11}}\)

\(=\frac{2^{12}.3^{10}+2^{12}.3^{10}.5}{2^{23}.3^{23}}=\frac{2^{12}.3^{10}\left(1+5\right)}{2^{23}.3^{23}}=\frac{6}{2^{11}.3^{13}}=\frac{2.3}{2^{11}.3^{12}}=\frac{1}{2^{10}.3^{11}}=\frac{1}{6^{10}.3}\)

\(\frac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}\)

\(=\frac{\left(2^2\right)^6.\left(3^2\right)^5+\left(2.3\right)^9.2^3.3.5}{\left(2^3\right)^4.3^{12}-\left(2.3\right)^{11}}\)

\(=\frac{2^{12}.3^{10}+2^9.3^9.2^3.3.5}{2^{12}.3^{12}-2^{11}.3^{11}}\)

\(=\frac{2^{12}.3^{10}.\left(1+5\right)}{2^{11}.3^{11}.\left(2.3-1\right)}\)

\(=\frac{2.6}{3.5}\)

\(=\frac{4}{5}\)

27 tháng 9 2020

Ta có: \(\frac{4^6\cdot9^5+6^9\cdot120}{8^4\cdot3^{12}-6^{11}}\)

\(=\frac{2^{12}\cdot3^{10}+2^3\cdot3\cdot5\cdot2^9\cdot3^9}{2^{12}\cdot3^{12}-2^{11}\cdot3^{11}}\)

\(=\frac{2^{12}\cdot3^{10}+2^{12}\cdot3^{10}\cdot5}{2^{12}\cdot3^{12}-2^{11}\cdot3^{11}}\)

\(=\frac{2^{12}\cdot3^{10}\cdot\left(1+5\right)}{2^{11}\cdot3^{11}\left(2\cdot3-1\right)}\)

\(=\frac{2\cdot6}{3\cdot5}=\frac{4}{5}\)