Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.\(\sqrt{7+4\sqrt{3}}=\sqrt{\left(\sqrt{3}+2\right)^2}=\left|\sqrt{3}+2\right|=\sqrt{3}+2\)
b.\(\sqrt{9-4\sqrt{5}}=\sqrt{\left(\sqrt{5}-2\right)^2}=\left|\sqrt{5}-2\right|=\sqrt{5}-2\)
c.\(\sqrt{14+6\sqrt{5}}=\sqrt{\left(\sqrt{5}+3\right)^2}=\left|\sqrt{5}+3\right|=\sqrt{5}+3\)
d.\(\sqrt{17-12\sqrt{2}}=\sqrt{\left(2\sqrt{2}-3\right)^2}=\left|2\sqrt{2}-3\right|=3-2\sqrt{2}\)
\(a^3=38+17\sqrt{5}+38-17\sqrt{5}+3\cdot a\cdot\sqrt[3]{\left(38\right)^2-\left(17\sqrt{5}\right)^2}\)
=>a^3=76-3a
=>a^3+3a-76=0
=>a=4
f(x)=(4^3+3*4+1940)^2016=2016^2016
\(A=\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)
\(=\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(=|2+\sqrt{3}|-|2-\sqrt{3}|\)
\(=2+\sqrt{3}-2+\sqrt{3}\)
\(=2\sqrt{3}\)
\(B=\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)
\(=\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}\)
\(=|3+\sqrt{2}|-|3-\sqrt{2}|\)
\(=3+\sqrt{2}-3+\sqrt{2}\)
\(=2\sqrt{2}\)
\(C=\sqrt{17+12\sqrt{2}}+\sqrt{17-12\sqrt{2}}\)
\(=\sqrt{\left(3+2\sqrt{2}\right)^2}+\sqrt{\left(3-2\sqrt{2}\right)^2}\)
\(=|3+2\sqrt{2}|+|3-2\sqrt{2}|\)
\(=3+2\sqrt{2}+3-2\sqrt{2}\)
\(=6\)
\(D=\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)
\(=\sqrt{\left(2+\sqrt{5}\right)^2}-\sqrt{\left(2-\sqrt{5}\right)^2}\)
\(=|2+\sqrt{5}|-|2-\sqrt{5}|\)
\(=2+\sqrt{5}-\sqrt{5}+2\)
\(=4\)
\(E=\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)
\(=\sqrt{\left(1+\sqrt{5}\right)^2}-\sqrt{\left(1-\sqrt{5}\right)^2}\)
\(=|1+\sqrt{5}|-|1-\sqrt{5}|\)
\(=1+\sqrt{5}-\sqrt{5}+1\)
\(=2\)
\(A=\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)
\(A=\sqrt{3}+2+2-\sqrt{3}\)
A = 2 + 2
A = 4
\(B=\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)
\(B=\sqrt{2}+3+3-\sqrt{2}\)
B = 3 + 3
B = 6
\(C=\sqrt{17+12\sqrt{2}}+\sqrt{17-12\sqrt{2}}\)
\(C=3+2\sqrt{2}+3-2\sqrt{2}\)
C = 3 + 3
C = 6
\(D=\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)
\(D=\sqrt{5}+2-\sqrt{5}+2\)
D = 2 + 2
D = 4
\(E=\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)
\(E=\sqrt{5}+1-\sqrt{5}+1\)
E = 1 + 1
E = 2
\(a,\sqrt{75}+2\sqrt{3}-2\sqrt{7}\\ =\sqrt{25\cdot3}+2\sqrt{3}-2\sqrt{7}\\ =5\sqrt{3}+2\sqrt{3}-2\sqrt{7}\\ =7\sqrt{3}-2\sqrt{7}\)
\(b,\sqrt{\left(4-\sqrt{7}\right)^2}-\sqrt{63}\\ =\left|4-\sqrt{7}\right|-\sqrt{9\cdot7}\\ =4-\sqrt{7}-3\sqrt{7}\\ =4-4\sqrt{7}\)
\(c,\dfrac{3}{\sqrt{5}+3}-\dfrac{\sqrt{5}}{\sqrt{5}-3}\\ =\dfrac{3\left(\sqrt{5}-3\right)}{5-3}-\dfrac{\sqrt{5}\left(\sqrt{5}+3\right)}{5-3}\\ =\dfrac{3\sqrt{5}-9-5-3\sqrt{5}}{2}\\ =\dfrac{-14}{2}\\ =-7\)
Ta có
\(x=\frac{\left(\sqrt{5}+2\right)\sqrt[3]{17\sqrt{5}-38}}{\sqrt{5}-\sqrt{14-6\sqrt{5}}}\)
\(=\frac{\left(\sqrt{5}+2\right)\sqrt[3]{5\sqrt{5}-3\cdot5\cdot2+3\sqrt{5}\cdot4-8}}{\sqrt{5}-\sqrt{\left(3-\sqrt{5}\right)^2}}\)
\(=\frac{\left(\sqrt{5}+2\right)\sqrt[3]{\left(\sqrt{5}-2\right)^3}}{\sqrt{5}+3-\sqrt{5}}\)
\(=\frac{\sqrt{5}^2-2^2}{3}=\frac{1}{3}\)
Với \(x=\frac{1}{3}\)thay vào bt ta có
\(A=\left[3\cdot\left(\frac{1}{3}\right)^3+8\cdot\left(\frac{1}{3}\right)^2+2\right]^{2011}\)
\(=3^{2011}\)
\(x=\frac{\sqrt[3]{17\sqrt{5}-38}\left(\sqrt{5}+2\right)}{\sqrt{5}+\sqrt{\left(3-\sqrt{5}\right)^2}}=\frac{\sqrt[3]{17\sqrt{5}-38}\left(\sqrt{5}+2\right)}{3}=\frac{\sqrt[3]{17\sqrt{5}-38}.\sqrt[3]{\left(\sqrt{5}+2\right)^3}}{3}\)
\(=\frac{\sqrt[3]{\left(17\sqrt{5}-38\right)\left(17\sqrt{5}+38\right)}}{3}=\frac{1}{3}\)
\(\Rightarrow A=\left[3.\left(\frac{1}{3}\right)^3+8.\left(\frac{1}{3}\right)^2+2\right]^{2005}=3^{2005}\)
Sửa đề:
\(x=\dfrac{\left(\sqrt{5}+2\right)\sqrt[3]{17\sqrt{5}-38}}{\sqrt{5}+\sqrt{14-6\sqrt{5}}}\)
\(=\dfrac{\left(\sqrt{5}+2\right)\sqrt[3]{5\sqrt{5}-3.5.2+12\sqrt{5}-8}}{\sqrt{5}+\sqrt{9-6\sqrt{5}+5}}\)
\(=\dfrac{\left(\sqrt{5}+2\right)\sqrt[3]{\left(\sqrt{5}-2\right)^3}}{\sqrt{5}+\sqrt{\left(3-\sqrt{5}\right)^2}}\)
\(=\dfrac{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}{\sqrt{5}+\left(3-\sqrt{5}\right)}=\dfrac{1}{3}\)
Thế vô A ta được
\(A=\left(3.\dfrac{1}{3^3}+8.\dfrac{1}{3^2}+2\right)^{2018}=3^{2018}\)