Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\dfrac{5^4.20^4}{25^5.4^5}=\dfrac{5^4.2^8.5^4}{5^{10}.2^{10}}=\dfrac{1}{5^2.2^2}=\dfrac{1}{25.4}=\dfrac{1}{100}\)
b, \(\dfrac{2^7.9^3}{6^5.8^2}=\dfrac{2^7.3^6}{2^5.3^5.2^6}=\dfrac{3}{2^4}=\dfrac{3}{16}\)
c, \(\dfrac{45^{10}.5^{20}}{75^5}=\dfrac{5^{10}.3^{20}.5^{20}}{3^5.5^{10}}=5^{20}.3^{15}\)
d, \(\left(0,8\right)^5=\left(0,1\right)^5.8^5=\dfrac{1}{100000}.32768=0,32768\)
e, \(\dfrac{2^{15}.9^4}{6^6.8^3}=\dfrac{2^{15}.3^8}{2^6.3^6.2^9}=3^2=9\)
d, \(\dfrac{8^{20}+4^{20}}{4^{25}+64^5}=\dfrac{2^{60}+2^{40}}{2^{50}+2^{30}}=\dfrac{2^{40}.\left(2^{20}+1\right)}{2^{30}.\left(2^{20}+1\right)}=2^{10}=1024\)
Chúc bạn học tốt!!!
\(\text{a) }\dfrac{5^4\cdot20^4}{25^5\cdot4^5}=\dfrac{5^4\cdot\left(5\cdot4\right)^4}{\left(5^2\right)^5\cdot4^5}=\dfrac{5^4\cdot5^4\cdot4^4}{5^{10}\cdot4^5}=\dfrac{5^8\cdot4^4}{5^{10}\cdot4^5}=\dfrac{1}{5^2\cdot4}=\dfrac{1}{25\cdot4}=\dfrac{1}{100}\)
\(\text{b) }\dfrac{2^7\cdot9^3}{6^5\cdot8^2}=\dfrac{2^7\cdot\left(3^2\right)^3}{\left(2\cdot3\right)^5\cdot\left(2^3\right)^2}=\dfrac{2^7\cdot3^6}{2^5\cdot3^5\cdot2^6}=\dfrac{2^7\cdot3^6}{2^5\cdot2^6\cdot3^5}=\dfrac{2^7\cdot3^6}{2^{11}\cdot3^5}=\dfrac{3}{2^4}=\dfrac{3}{16}\)
\(\text{c) }\dfrac{45^{10}\cdot5^{20}}{75^5}=\dfrac{\left(5\cdot9\right)^{10}\cdot5^{20}}{\left(25\cdot3\right)^5}=\dfrac{5^{10}\cdot9^{10}\cdot5^{20}}{25^5\cdot3^5}=\dfrac{5^{10}\cdot5^{20}\cdot\left(3^2\right)^{10}}{\left(5^2\right)^5\cdot3^5}=\dfrac{5^{30}\cdot3^{20}}{5^{10}\cdot3^5}=5^{20}\cdot3^{15}\)
\(\text{d) }\left(0.8\right)^5=\left(\dfrac{8}{10}\right)^5=\left(\dfrac{4}{5}\right)^5=\dfrac{4^5}{5^5}=\dfrac{64}{3125}\)
\(\text{e) }\dfrac{2^{15}\cdot9^4}{6^6\cdot8^3}=\dfrac{2^{15}\cdot\left(3^2\right)^4}{\left(2\cdot3\right)^6\cdot\left(2^3\right)^3}=\dfrac{2^{15}\cdot3^8}{2^6\cdot3^6\cdot2^9}=\dfrac{2^{15}\cdot3^8}{2^6\cdot2^9\cdot3^6}=\dfrac{2^{15}\cdot3^8}{2^{15}\cdot3^6}=3^2=9\)
\(f\text{) }\dfrac{8^{20}+4^{20}}{4^{25}+64^5}=\dfrac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}=\dfrac{2^{60}+2^{40}}{2^{50}+2^{30}}=\dfrac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}=2^{10}=1024\)
a, \(4^3.5^3=\left(4.5\right)^3=20^3=8000\)
b, \(6^3.5^3=\left(6.5\right)^3=30^3=27000\)
c, \(8^2.5^2=\left(8.5\right)^2=40^2=1600\)
d, \(125^3.8^3=\left(125.8\right)^3=1000^3\)
e, \(5^2.6^2.3^2=\left(5.6.3\right)^2=90^2\)
\(A=\dfrac{4\cdot5^{10}\cdot5^{10}}{75^{10}}=\dfrac{4\cdot5^{20}}{\left(3\cdot25\right)^{10}}=\dfrac{4\cdot5^{20}}{3^{10}\cdot25^{10}}=\dfrac{4\cdot5^{20}}{3^{10}\cdot\left(5^2\right)^{10}}=\dfrac{4\cdot5^{20}}{3^{10}\cdot5^{20}}=\dfrac{4}{3^{10}}\)
\(B=\dfrac{\left(0.8\right)^5}{\left(0.4\right)^6}=\dfrac{\left(\dfrac{4}{5}\right)^5}{\left(\dfrac{2}{5}\right)^6}=\dfrac{\left(2\cdot\dfrac{2}{5}\right)^5}{\left(\dfrac{2}{5}\right)^6}=\dfrac{2^5\cdot\left(\dfrac{2}{5}\right)^5}{\left(\dfrac{2}{5}\right)^5\cdot\dfrac{2}{5}}=\dfrac{2^5}{\dfrac{2}{5}}=2^5\cdot\dfrac{5}{2}=\dfrac{32\cdot5}{2}=80\)
\(C=\dfrac{2^{15}\cdot9^4}{6^6\cdot8^3}=\dfrac{2^{15}\cdot\left(3^2\right)^4}{\left(2\cdot3\right)^6\cdot\left(2^3\right)^3}=\dfrac{2^{15}\cdot3^8}{2^6\cdot3^6\cdot2^9}=\dfrac{2^{15}\cdot3^8}{2^6\cdot2^9}=\dfrac{2^{15}\cdot3^8}{2^{15}\cdot3^6}=\dfrac{3^8}{3^6}=3^2=9\)
\(D=\dfrac{8^{10}+4^{10}}{8^4+4^{11}}=\dfrac{\left(2^3\right)^{10}+\left(2^2\right)^{10}}{\left(2^3\right)^4+\left(2^2\right)^{11}}=\dfrac{2^{30}+2^{20}}{2^{12}+2^{22}}=\dfrac{2^{^{20}}\left(2^{10}+1\right)}{2^{12}\left(2^{10}+1\right)}=\dfrac{2^{20}}{2^{12}}=2^8=226\)
1.Tính
(0,25)4.1024=(1/4)4.1024=4
2.So sánh
291=(213)7=81927
535=(55)7=31257
Mà 8192>3125=> 81927>31257
=> 291>535
3. Tìm giá trị biểu thức
a) \(\dfrac{45^{10^{ }}.5^{20^{ }}}{75^{15}}=\dfrac{\left(3^{2^{ }}.5\right)^{10^{ }}.5^{20}}{^{ }\left(3.5^2\right)^{15}}=\dfrac{3^{20}.5^{30}}{3^{15}.5^{30}}=3^5=243\)
b)\(\dfrac{\left(0,8\right)^5}{\left(0,4\right)^6}=\dfrac{\left(2.0,4\right)^5}{0,4.0,4^5}=\dfrac{2^{5^{ }}.0,4^5}{0,4.0,4^5}=\dfrac{2^5}{0,4}=80\)
c)\(\dfrac{2^{15}.9^4}{6^6.8^3}=\dfrac{2^{15^{ }}.3^8}{3^6.2^6.2^9}=\dfrac{2^{15}.3^8}{3^6.2^{15}}=3^2=9\)
Tic hộ tui đi !!! chúc bn hok tôts
a) \(x+\dfrac{3}{10}=\dfrac{-2}{5}\)
\(x=\dfrac{-2}{5}-\dfrac{3}{10}\)
\(x=\dfrac{-7}{10}\)
b) \(x+\dfrac{5}{6}=\dfrac{2}{5}-\left(-\dfrac{2}{3}\right)\)
\(x+\dfrac{5}{6}=\dfrac{2}{5}+\dfrac{2}{3}\)
\(x+\dfrac{5}{6}=\dfrac{16}{15}\)
\(x=\dfrac{16}{15}-\dfrac{5}{6}\)
\(x=\dfrac{7}{30}\)
c) \(1\dfrac{2}{5}x+\dfrac{3}{7}=-\dfrac{4}{5}\)
\(\dfrac{7}{5}x+\dfrac{3}{7}=-\dfrac{4}{5}\)
\(\dfrac{7}{5}x=-\dfrac{4}{5}-\dfrac{3}{7}\)
\(\dfrac{7}{5}x=\dfrac{-43}{35}\)
\(\Rightarrow x=\dfrac{-43}{49}\)
d) \(\left[x+\dfrac{3}{4}\right]-\dfrac{1}{3}=0\)
\(\left[x+\dfrac{3}{4}\right]=0+\dfrac{1}{3}\)
\(\left[x+\dfrac{3}{4}\right]=\dfrac{1}{3}\)
\(x=\dfrac{1}{3}-\dfrac{3}{4}\)
\(x=\dfrac{-5}{12}\)
e) \(\left[x+\dfrac{4}{5}\right]-\left(-3,75\right)=-\left(-2,15\right)\)
\(\left[x+\dfrac{4}{5}\right]+3,75=2,15\)
\(x+\dfrac{4}{5}=2,15-3,75\)
\(x+\dfrac{4}{5}=-\dfrac{8}{5}\)
\(x=\dfrac{-8}{5}-\dfrac{4}{5}\)
\(x=\dfrac{-12}{5}\)
f) \(\left(x-2\right)^2=1\)
\(\Rightarrow x=1\)
Sức chịu đựng có giới hạn -.-
- Mình tiếp tục cho Nguyễn Phương Trâm nhé.
g, \(\left(2x-1\right)^3=-27\)
\(\Rightarrow\left(2x-1\right)^3=\left(-3\right)^3\)
\(\Rightarrow2x-1=-3\)
\(\Rightarrow2x=-2\)
=> \(x=-1\)
- Vậy x = -1
h,\(\dfrac{x-1}{-15}=-\dfrac{60}{x-1}\)
\(\Rightarrow\left(x-1\right)^2=-60.\left(-15\right)\)
\(\Rightarrow\left(x-1\right)^2=900 \)
\(\Rightarrow\left(x-1\right)^2=30^2\Rightarrow x-1=30\)
=> x = 31
i,\(x:\left(\dfrac{-1}{2}\right)^3=\dfrac{-1}{2}\)
=> \(x:\left(-\dfrac{1}{8}\right)=-\dfrac{1}{2}\)
\(\Rightarrow x=\dfrac{1}{16}\)
- Vậy x=\(\dfrac{1}{16}\)
j, \(\left(\dfrac{3}{4}\right)^5.x=\left(\dfrac{3}{4}\right)^7\)
\(\Rightarrow \left(\dfrac{3}{4}\right).x=\left(\dfrac{3}{4}\right)^2\)
\(\Rightarrow x=\left(\dfrac{3}{4}\right)^2:\dfrac{3}{4}\)
\(\Rightarrow x=\dfrac{3}{4}\)
- Vạy x = \(\dfrac{3}{4}\)
k, \(8^x:2^x=4\Rightarrow\left(8:2\right)^x=4\)
=>\(4^x=4\)
=> x = 1
- Vậy x = 1
I don't now
sorry
...................
nha
\(A=\frac{2^{15}.9^4}{6^6.8^3}=\frac{2^{15}.3^8}{2^6.3^6.2^9}=\frac{2^{15}.3^2}{3^{15}}=9\)
\(B=\frac{45^{10}.5^{10}}{75^{10}}=\frac{5^{10}.3^{20}.5^{10}}{5^{20}.3^{10}}=3^{10}\)
\(C=\frac{\left(0,8\right)^5}{\left(0,4\right)^6}=\frac{\left(0,4\right)^5.\left(0,2\right)^5}{0,4^6}=\frac{0,2^5}{0,2^2}=0,2^3\)
\(D=\frac{8^{10}+4^{10}}{8^{11}+4^{11}}=\frac{4^{10}\left(2^{10}+1\right)}{4^{11}\left(2^{11}+1\right)}=\frac{2^{10}+1}{2^{13}+1}\)
câu 1 \(A=\dfrac{3^2}{5^2}.5^2-\dfrac{9^3}{4^3}:\dfrac{3^3}{4^3}+\dfrac{1}{2}\)
\(A=\dfrac{3^2}{5^2}.5^2-\dfrac{\left(3^2\right)^3}{4^3}.\dfrac{4^3}{3^3}+\dfrac{1}{2}\)
\(A=\dfrac{3^2}{5^2}.5^2-\dfrac{3^6}{4^3}.\dfrac{4^3}{3^3}+\dfrac{1}{2}=3^2-3^3+\dfrac{1}{2}=-18+\dfrac{1}{2}=-\dfrac{35}{2}\)
\(B=\left[\dfrac{4}{11}+\dfrac{7}{22}.2\right]^{2010}-\left(\dfrac{1}{2^2}.\dfrac{4^4}{8^2}\right)^{2009}\)
\(B=\left[\dfrac{4}{11}+\dfrac{7}{11}\right]^{2010}-\left(\dfrac{1}{2^2}.\dfrac{\left(2^2\right)^4}{\left(2^3\right)^2}\right)^{2009}\)
\(B=1^{2010}-\left(\dfrac{1}{2^2}.\dfrac{2^8}{2^6}\right)^{2009}\)
\(B=1^{2010}-\left(\dfrac{2^8}{2^8}\right)^{2009}\)
\(B=1^{2010}-1^{2009}=1-1=0\)
câu 2
a) \(2x-\dfrac{5}{4}=\dfrac{20}{15}\)
\(\Leftrightarrow2x=\dfrac{4}{3}+\dfrac{5}{4}\)
\(\Leftrightarrow2x=\dfrac{31}{12}\)
\(\Leftrightarrow x=\dfrac{31}{24}\)
b) \(\left(x+\dfrac{1}{3}\right)^3=\left(-\dfrac{1}{2}\right)^3\)
\(\Leftrightarrow x+\dfrac{1}{3}=-\dfrac{1}{2}\)
\(\Leftrightarrow x=-\dfrac{1}{2}-\dfrac{1}{3}\)
\(\Leftrightarrow x=-\dfrac{5}{6}\)
\(1,\)
\(a,\dfrac{11}{125}-\dfrac{17}{18}-\dfrac{5}{7}+\dfrac{4}{9}+\dfrac{17}{14}\)
\(=\dfrac{11}{125}+\left(\dfrac{4}{9}-\dfrac{17}{18}\right)+\left(\dfrac{17}{14}-\dfrac{5}{7}\right)\)
\(=\dfrac{11}{125}+\left(\dfrac{-1}{2}\right)+\dfrac{1}{2}\)
\(=\dfrac{11}{125}\)
\(b,-1\dfrac{5}{7}.15+\dfrac{2}{7}.\left(-15\right)+\left(-105\right).\left(\dfrac{2}{3}-\dfrac{4}{5}+\dfrac{1}{7}\right)\)
\(=\dfrac{-12}{7}.15+\dfrac{2}{7}.\left(-15\right)+\left(105\right).\left(\dfrac{2}{3}-\dfrac{4}{5}+\dfrac{1}{7}\right)\)
\(=-15.\left[\dfrac{12}{7}+\dfrac{2}{7}+\left(-5\right).\left(\dfrac{2}{3}-\dfrac{4}{5}+\dfrac{1}{7}\right)\right]\)
\(=-15.\left[2+\left(-5\right).\dfrac{1}{105}\right]\)
\(=-15.\left(2-\dfrac{1}{21}\right)\)
\(=-15.\dfrac{41}{21}=\dfrac{-615}{21}\)
\(2,\)
\(a,\dfrac{11}{13}-\left(\dfrac{5}{42}-x\right)=-\left(\dfrac{15}{28}-\dfrac{11}{13}\right)\)
\(\Leftrightarrow\dfrac{11}{13}-\dfrac{5}{42}+x=\dfrac{-15}{28}+\dfrac{11}{13}\)
\(\Leftrightarrow x=\dfrac{-15}{28}+\dfrac{11}{13}-\dfrac{11}{13}+\dfrac{5}{42}\)
\(\Leftrightarrow x=\left(\dfrac{11}{13}-\dfrac{11}{13}\right)+\left(\dfrac{5}{42}+\dfrac{-15}{28}\right)\)
\(\Leftrightarrow x=\dfrac{5}{12}\)
Vậy \(x=\dfrac{5}{12}\)
\(b,\left|x+\dfrac{4}{15}\right|-\left|-3,75\right|=-\left|-2,15\right|\)
\(\Leftrightarrow\left|x+\dfrac{4}{15}\right|-3,75=-2,15\)
\(\Leftrightarrow\left|x+\dfrac{4}{15}\right|=-2,15+3,75=1,6=\dfrac{16}{10}=\dfrac{8}{5}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{4}{15}=\dfrac{8}{5}\\x+\dfrac{4}{15}=\dfrac{-8}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{8}{5}-\dfrac{4}{15}=\dfrac{4}{3}\\x=\dfrac{-8}{5}-\dfrac{4}{15}=\dfrac{-28}{15}\end{matrix}\right.\)
Vậy \(x\in\left\{\dfrac{4}{3};\dfrac{-28}{15}\right\}\)
\(c,7^{x+2}+2.7^{x-1}=345\)
\(\Leftrightarrow7^{x-1}.\left(7^3+2\right)=345\)
\(\Leftrightarrow7^{x-1}.\left(343+2\right)=345\)
\(\Leftrightarrow7^{x-1}.345=345\)
\(\Leftrightarrow7^{x-1}=345:345=1\)
\(\Leftrightarrow x-1=0\)
\(x=0+1=1\)
Vậy \(x=1\)
cứ phan tích cho hết đi là đc 9^6. 9^10 = (3^2)^6...................
tự làm đi
1. Tính:
a. \(\dfrac{9^6.9^{10}}{3^{32}}=\dfrac{\left(3^2\right)^6.\left(3^2\right)^{10}}{3^{32}}=\dfrac{3^{12}.3^{20}}{3^{32}}=\dfrac{3^{32}}{3^{32}}=1\)
b. \(\dfrac{25^8.25^{10}}{5^{34}}=\dfrac{\left(5^2\right)^8.\left(5^2\right)^{10}}{5^{34}}=\dfrac{5^{16}.5^{20}}{5^{34}}=\dfrac{5^{36}}{5^{34}}=5^{36}:5^{34}=5^2=25\)
c. \(\dfrac{7^{56}}{49^9.49^{20}}=\dfrac{7^{56}}{\left(7^2\right)^9.\left(7^2\right)^{20}}=\dfrac{7^{56}}{7^{18}.7^{40}}=\dfrac{7^{56}}{7^{58}}=7^{56}:7^{58}=\dfrac{7^{56}}{7^{56}.7^2}=\dfrac{1}{7^2}=\dfrac{1}{49}\)
d. \(\dfrac{4^2.4^3}{2^{10}}=\dfrac{\left(2^2\right)^2.\left(2^2\right)^3}{2^{10}}=\dfrac{2^4.3^6}{2^{10}}=\dfrac{2^{10}}{2^{10}}=1\)
e. \(\dfrac{2^{17}.25^5}{10^8.8^3}=\dfrac{2^{17}.\left(5^2\right)^5}{\left(2.5\right)^8.\left(2^3\right)^3}=\dfrac{2^{17}.5^{10}}{2^8.5^8.2^9}=\dfrac{2^{17}.5^{10}}{2^{17}.5^8}=\dfrac{5^{10}}{5^8}=5^{10}:5^8=5^2=25\)
f. \(\dfrac{3^{15}.25^4}{15^6.27^3}=\dfrac{3^{15}.\left(5^2\right)^4}{\left(3.5\right)^6.\left(3^3\right)^3}=\dfrac{3^{15}.5^8}{5^6.3^6.3^9}=\dfrac{3^{15}.5^8}{5^6.3^6.3^9}=\dfrac{5^8}{5^6}=5^8:5^6=5^2=25\)
2. Tính lũy thừa âm:
a. 3-2 = \(\dfrac{1}{3^2}\) = \(\dfrac{1}{9}\)
b. 2-3 = \(\dfrac{1}{2^3}\) = \(\dfrac{1}{8}\)
3. Tính :
a. \(\dfrac{\left(0,8\right)^4}{\left(0,4\right)^3}=\dfrac{\left(0,8\right)^3.0,8}{\left(0,4\right)^3}=\left(\dfrac{0,8}{0,4}\right)^3.0,8=2^3.0,8=8.0,8=6,4\)
b. \(\dfrac{\left(0,8\right)^3}{\left(0,4\right)^4}=\dfrac{\left(0,8\right)^3}{\left(0,4\right)^3:0,4}=\left(\dfrac{0,8}{0,4}\right)^3.\dfrac{1}{0,4}=2^3.2,5=8.2,5=20\)
c. \(\dfrac{\left(0,6\right)^5}{\left(0,2\right)^6}=\dfrac{\left(0,6\right)^5}{\left(0,2\right)^5.\left(0,2\right)}=\left(\dfrac{\left(0,6\right)}{\left(0,2\right)}\right)^5.\dfrac{1}{0,2}=3^5.\dfrac{1}{0,2}=\dfrac{3^5}{0,2}=1215\)
P/s : Chế Mai Ngọc Trâm thử tham khảo thử đi!!!
a) \(\dfrac{2^{15}.9^4}{6^6.8^3}=\dfrac{2^{15}.\left(3^2\right)^4}{\left(2.3\right)^6.\left(2^3\right)^3}=\dfrac{2^{15}.3^8}{3^6.2^6.2^9}=\dfrac{2^{15}.3^8}{3^6.2^{15}}=3^2=9\)
b) \(\dfrac{45^{15}.5^{15}}{75^{15}}=\dfrac{\left(9.5\right)^{15}.5^{15}}{\left(3.25\right)^{15}}=\dfrac{9^{15}.5^{15}.5^{15}}{3^{15}.25^{15}}=\dfrac{\left(3^2\right)^{15}.5^{30}}{3^{15}.\left(5^2\right)^{15}}\)
\(\dfrac{3^{30}.5^{30}}{3^{15}.5^{30}}=3^{15}=14348907\)
c) \(\dfrac{8^{10}+4^{10}}{8^4+4^{11}}=\dfrac{\left(2^3\right)^{10}+\left(2^2\right)^{10}}{\left(2^3\right)^4+\left(2^2\right)^{11}}=\dfrac{2^{30}+2^{20}}{2^{12}+2^{22}}=\dfrac{2^{20}\left(2^{10}+1\right)}{2^{12}\left(1+2^{10}\right)}\)
\(=\dfrac{2^{20}}{2^{12}}=2^8=256\)
d) \(\dfrac{ \left(x^2\right)^5}{\left(x^5\right)^2}=\dfrac{x^{10}}{x^{10}}=1\)