Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. y4 - 14y2 + 49
Gọi y2 là t, ta có:
t2 - 14t + 49
<=> t2 - 14t + 72
<=> (t - 7)2
Thay x2 = t
<=> (x2 - 7)2
b. \(\dfrac{1}{4}-x^2\)
\(\Leftrightarrow\left(\dfrac{1}{2}\right)^2-x^2\)
\(\Leftrightarrow\left(\dfrac{1}{2}-x\right)\left(\dfrac{1}{2}+x\right)\)
c. x4 - 16
<=> (x2)2 - 42
<=> (x2 - 4)(x2 + 4)
d. x2 - 9
<=> x2 - 32
<=> (x - 3)(x + 3)
a) Ta có: \(\left(x-2\right)^3-\left(3+x^2\right)\left(3-x\right)\)
\(=x^3-6x^2+12x-8+\left(x-3\right)\left(x^2+3\right)\)
\(=x^3-6x^2+12x-8+x^3+3x-3x^2-9\)
\(=2x^3-9x^2+15x-17\)
b) Ta có: \(x\left(x-14\right)-10\left(x-1\right)^2\)
\(=x^2-14x-10\left(x^2-2x+1\right)\)
\(=x^2-14x-10x^2+20x-10\)
\(=-9x^2+6x-10\)
c) Ta có: \(2x\left(x+2\right)-\left(x+2\right)\left(x-2\right)\)
\(=2x^2+4x-\left(x^2-4\right)\)
\(=2x^2+4x-x^2+4\)
\(=x^2+4x+4\)
d) Ta có: \(\left(x-3\right)\left(x^2+3x+9\right)-\left(x^3-27\right)\)
\(=x^3-27-x^3+27\)
=0
\(A=\left(\dfrac{2x^2}{x^2-9}+\dfrac{3}{x-3}-\dfrac{x}{x+3}\right).\dfrac{4}{5x+15}\) (1)
a) ĐKXĐ: \(x\ne\pm3\)
b) \(\left(1\right)=\left[\dfrac{2x^2}{\left(x-3\right)\left(x+3\right)}+\dfrac{3\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}\right].\dfrac{4}{5x+15}\)
\(=\dfrac{2x^2+3x+9-x^2+3x}{\left(x-3\right)\left(x+3\right)}.\dfrac{4}{5x+15}\)
\(=\dfrac{x^2+6x+9}{\left(x-3\right)\left(x+3\right)}.\dfrac{4}{5\left(x+3\right)}\)
\(=\dfrac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}.\dfrac{4}{5\left(x+3\right)}\)
\(=\dfrac{4}{5\left(x-3\right)}\)
c) Thay \(x=19\) vào \(A=\dfrac{4}{5\left(x-3\right)}\) ta có:
\(A=\dfrac{4}{5.\left(19-3\right)}=\dfrac{4}{80}=\dfrac{1}{20}\)
Vậy \(x=19\) thì \(A=\dfrac{1}{20}\)
a) ĐK: \(x\)≠\(+-3\)
b) \(A=\left(\dfrac{2x^2}{x^2-9}+\dfrac{3}{x-3}-\dfrac{x}{x+3}\right).\dfrac{4}{5x+15}\)
\(=\dfrac{2x^2+3\left(x+3\right)-x\left(x-3\right)}{x^2-9}.\dfrac{4}{5\left(x+3\right)}\)
\(=\dfrac{2x^2+3x+9-x^2+3x}{\left(x+3\right)\left(x-3\right)}.\dfrac{4}{5\left(x+3\right)}\)
\(=\dfrac{4\left(x^2+6x+9\right)}{5\left(x+3\right)^2\left(x-3\right)}=\dfrac{4\left(x+3\right)^2}{5\left(x+3\right)^2\left(x-3\right)}=\dfrac{4}{5\left(x-3\right)}=\dfrac{4}{5x-15}\)
c) Tại x=19
⇒ \(A=\dfrac{4}{5.19-15}=\dfrac{4}{80}=\dfrac{1}{20}\)
Vậy ...
a, `(x-3)(x^2+3x+9)-(x^2-1)(9x+27)`
`=x^3-3^3-(9x^3+27x^2-9x-27)`
`=x^3-3^3-9x^3-27x^2+9x+27`
`=-8x^3-27x^2+9x`
b, `(x-2)(x^2+2x+4)-x(x-3)(x+3)`
`=x^3-2^3-x(x^2-9)`
`=x^3-8-x^3+9x`
`=9x-8`
a) Ta có: \(\left(x-3\right)\left(x^2+3x+9\right)-\left(x^2-1\right)\left(9x+27\right)\)
\(=x^3-27-\left(9x^3+27x^2-9x-27\right)\)
\(=x^3-27-9x^3-27x^2+9x+27\)
\(=-8x^3-27x^2+9x\)
b) Ta có: \(\left(x-2\right)\left(x^2+2x+4\right)-x\left(x-3\right)\left(x+3\right)\)
\(=x^3-8-x\left(x^2-9\right)\)
\(=x^3-8-x^3+9x\)
\(=9x-8\)
Tử số= 2^19.9^3.3^3 + 5.3.2^9.2^9.9^4
= 2^19.9^3.3^3 + 5.3.2^18.9.9^3
= 2^19.9^3.3.3^2 + 5.3.2^18.3^2.9^3
= 2^18.9^3.3^2(2 + 5.) (đặt nhân tử chung)
=7.2^18.9^3.3^2
=7.2^18.9.9.9.3^2
=7.2^18.3^2.3^2.3^2.3^2
=7.2^18.3^8
Mẫu số= 6^9.2^10 + 6^10.2^10
= 6^9.2^10 + 6^10.2^10
=6^9.2^10(1+6)
=7.6^9.2^10.
=7.2^9.3^9.2^10
=7.2^19.3^9
Lấy tử số chia mẫu số ta được : 1/2.3 = 1/6