Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Điện trở tương đương đoạn mạch :
\(R = R_1 + R_2 + R_3 = 20 + 30 + 40 = 90 (\Omega) \quad\)
b) Hiệu điện thế giữa hai đầu AB :
\(U = IR = 0,2 \cdot 90 = 18 (V) \quad\)
c) Do \(R_1 \; nt \; R_2 \; nt \; R_3\) nên \(I_1 = I_2 = I_3 = I = 0,2 (A) \quad\)
Hiệu điện thế giữa hai đầu mỗi điện trở :
\(U_1 = I_1 R_1 = 0,2 \cdot 20 = 4 (V) \quad\)
\(U_2 = I_2 R_2 = 0,2 \cdot 30 = 6 (V) \quad\)
\(U_3 = I_3 R_3 = 0,2 \cdot 40 = 8 (V) \quad\)
a) Rtd= \(\frac{1}{R_1}+\frac{1}{R_2}\)= \(\frac{1}{15}+\frac{1}{10}\)=6 \(\Omega\)
b) I=\(\frac{U}{R}\)(định luật ôm)=\(\frac{18}{6}\)=3(A)
ta có:
\(R=\frac{R_1R_2}{R_1+R_2}=12\Omega\)
\(\Rightarrow I=\frac{U}{R}=1A\)
\(R_{tđ}=\dfrac{R_1R_2}{R_1+R_2}=\dfrac{20.30}{20+30}=12\)Ω
Ta có \(U=R_{tđ}.I \)
Thay số: \(U=12.1,2=14,4\)Ω
Ta có: \(I_1=\dfrac{U}{R_1}=\dfrac{14,4}{20}=0,72\)A
Lại có: \(I_2=I-I_1=1,2-0,72=0,48\)A
Vậy cường độ dòng điện đi qua R1 và R2 lần lượt là 0,72A và 0,48A
Tóm tắt :
R1 = 6\(\Omega\)
R2 = 10\(\Omega\)
R1 nt R2
U = 12V
a) Rtđ = ?
U = ?
b ) t = 40' = 2400s
A= ?
c) R3 // R1
R3 = ?; I = 1A
\(P_3=?\)
GIẢI :
a) Điện trở tương đương của đoạn mạch là :
\(R_{tđ}=R_1+R_2=6+10=16\left(\Omega\right)\)
Cường độ dòng điện qua đoạn mạch là :
\(I=\dfrac{U}{R_{tđ}}=\dfrac{12}{16}=0,75\left(A\right)\)
=> I1 = I2 = I = 0,75A (do R1 nt R2)
Hiệu điện thế giữa hai đầu điện trở R1 là :
\(U_1=I_1.R_1=0,75.6=4,5\left(V\right)\)
Hiệu điện thế giữa hai đầu điện trở R2 là :
\(U_2=I_2.R_2=0,75.10=7,5\left(V\right)\)
b) Nhiệt lượng tỏa ra của đoạn mạch trong 40 phút là:
\(Q=I^2.R.t=0,75^2.16.2400=21600\left(J\right)\)
Câu 1
Điện trở tương đương của đoạn mạch là
Rtđ = R1 + R2 = 3+4,5=7,5\(\Omega\)
I = U/Rtđ = 7,5/7,5 =1A
Vì R1ntR2 => I1=I2=I=1A
Hiệu điện thế U1 là : U1 = I1.R1= 1.3=3V
Hiệu điện thế U2 là : U2=U-U1=7,5-3=4,5V
a) Điện trở tương đương của đoạn mạch trên:
\(R_{tđ}=\dfrac{R_1.R_2}{R_1+R_2}=\dfrac{9.18}{9+18}=6\Omega\)
b) Cường độ dòng điện qua mạch:
\(I=\dfrac{U}{R_{tđ}}=\dfrac{3,6}{6}=0,6A\)
Vì \(R_1\) mắc song song với \(R_2\) \(\Rightarrow U=U_1=U_2=3,6V\)
Cường độ dòng điện chạy qua mỗi điện trở:
\(I_1=\dfrac{U_1}{R_1}=\dfrac{3,6}{9}=0,4A\)
\(I_2=I-I_1=0,6-0,4=0,2A\)
c) Điện trở tương đương của đoạn mạch sau khi mắc thêm R3:
\(\dfrac{1}{R_{tđ'}}=\dfrac{1}{R_1}+\dfrac{1}{R_2}+\dfrac{1}{R_3}=\dfrac{1}{9}+\dfrac{1}{18}+\dfrac{1}{6}=\dfrac{1}{3}\)
\(\Rightarrow R_{tđ'}=3\Omega\)
Cường độ dòng điện của mạch lúc này:
\(I'=\dfrac{U}{R_{tđ'}}=\dfrac{3,6}{3}=1,2A\)
CĐDĐ chạy qua mạch chính là:
I = I1+I2 = 0,8+0,4 = 1,2A
Điện trở tương đương là;
R=U/I=24/1,2=20Ω
Điện trở R1 là:
R1=\(\dfrac{U_1}{I_1}=\dfrac{24}{0,8}=30\Omega\)
Điện trở R2 là:
R2=\(\dfrac{U_2}{I_2}=\dfrac{24}{0,4}=60\Omega\)
a. \(R=\dfrac{R1.R2}{R1+R2}=\dfrac{10.15}{10+15}=6\left(\Omega\right)\)
b. \(U=U1=U2=12\left(V\right)\)(R1//R2)
\(\left[{}\begin{matrix}I=U:R=12:6=2\left(A\right)\\I1=U1:R1=12:10=1,2\left(A\right)\\I2=U2:R2=12:15=0,8\left(A\right)\end{matrix}\right.\)