Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(P\left(x\right)=2x^3+x^2+x+2\)
\(Q\left(x\right)=x^3+x^2+x+1\)
b: \(P\left(-1\right)=2\cdot\left(-1\right)+1-1+2=0\)
\(Q\left(-1\right)=-1+1-1+1=0\)
Do đó: x=-1 là nghiệm chung của P(x), Q(x)
\(P\left(x\right)=2x^3-2x+x^2+3x+2\)
\(P\left(x\right)=2x^3+x^2+x+2\)
\(Q\left(x\right)=4x^3-3x^2-3x+4x-3x^3+4x^2+1\)
\(Q\left(x\right)=x^3+x^2+x+1\)
__________________________________________________
\(P\left(-1\right)=2.\left(-1\right)^3+\left(-1\right)^2+\left(-1\right)+2\)
\(P\left(-1\right)=0\)
\(Q\left(-1\right)=\left(-1\right)^3+\left(-1\right)^2+\left(-1\right)+1\)
\(Q\left(-1\right)=0\)
Vậy x = -1 là nghiệm của P(x),Q(x)
a) \(P_{\left(x\right)}=2x^3-2x+x^2+3x+2\)
\(P_{\left(x\right)}=2x^3+x^2+x+2\)
\(Q_{\left(x\right)}=4x^3-3x^2-3x+4x-3x^3+4x^2+1\)
\(Q_{\left(x\right)}=x^3+x^2+x+1\)
b) \(P_{\left(x\right)}+Q_{\left(x\right)}=\left(2x^3+x^2+x+2\right)+\left(x^3+x^2++x+1\right)\)
\(=3x^3+2x^2+2x+3\)
a/ P(x)=2x^3-2x+x^2-x^3+3x+2 = x^3+x^2+x+2
Q(x)=4x^3-5x^2+3x-4x+3x^3+4x^2+1=7x^3-x^2-x+1
b/ P(x) + Q(x) = x^3+x^2+x+2 + 7x^3-x^2-x+1 = 8x^3 + 3
P(x) - Q(x) = x^3+x^2+x+2 - (7x^3-x^2-x+1) = -6x^3 + 2x^2+2x+1
c/ P (-1) = (-1)^3+ (-1)^2+ (-1) +2 = 1
Q(2)= 7*2^3-2^2-2+1 = 51
1. \(A=x^{15}+3x^{14}+5=x^{14}\left(x+3\right)+5\)
Thay \(x+3=0\)vào đa thức ta được:\(A=x^{14}.0+5=5\)
2. \(B=\left(x^{2007}+3x^{2006}+1\right)^{2007}=\left[x^{2006}\left(x+3\right)+1\right]^{2007}\)
Thay \(x=-3\)vào đa thức ta được: \(B=\left[x^{2006}\left(-3+3\right)+1\right]^{2017}=\left(x^{2006}.0+1\right)^{2017}=1^{2017}=1\)
3. \(C=21x^4+12x^3-3x^2+24x+15=3x\left(7x^3+4x^2-x+8\right)+15\)
Thay \(7x^3+4x^2-x+8=0\)vào đa thức ta được: \(C=3x.0+15=15\)
4. \(D=-16x^5-28x^4+16x^3-20x^2+32x+2007\)
\(=4x\left(-4x^4-7x^3+4x^2-5x+8\right)+2007\)
Thay \(-4x^4-7x^3+4x^2-5x+8=0\)vào đa thức ta được: \(D=4x.0+2007=2007\)
1. \(A=x^{15}+3x^{14}+5\)
\(A=x^{14}\left(x+3\right)+5\)
\(A=x^{14}+5\)
2. \(B=\left(x^{2007}+3x^{2006}+1\right)^{2007}\)
\(B=\left[x^{2006}\left(x+3\right)+1\right]^{2007}\)
\(B=\left[x^{2006}.\left(-3+3\right)+1\right]^{2007}\)
\(B=1^{2007}=1\)
3. \(C=21x^4+12x^3-3x^2+24x+15\)
\(C=3x\left(7x^2+4x^2-x+8+5\right)\)
\(C=3x\left(0+5\right)\)
\(C=15x\)
4. \(D=-16x^5-28x^4+16x^3-20x^2+32+2007\)
\(D=4x\left(-4x^4-7x^3+4x^2-5x+8\right)+2007\)
\(D=4x.0+2007\)
\(D=2007\)
a) P(x)= 2x^3-2x+x^2+3x+2
P(x)= 2x^3+(-2x+3x)+x^2+2
P(x)= 2x^3+1x+x^2+2
Q(x)=4x^3-3x^2-3x+4x-3x^3+4x^2+1
Q(x)=(4x^3-3x^3)+(-3x^2+4x^2)+(-3x+4x)+1
Q(x)= 1x^3+1x^2+1x+1
b) P(-1)= 2.(-1^3)+1.(-1)+(-1^2)+2
P(-1)= -2+(-1)+1+2
P(-1)= 0
=>x=-1 là nghiệm của P(x)
Q(-1)= 1.(-1^3)+1.(-1^2)+1.(-1)+1
Q(-1)= -1+1+(-1)+1
Q(-1)= 0
=>x=-1 là nghiệm của Q(x)
c) R(x)=P(x)-Q(x)=(2x^3+1x+x^2+2)-(1x^3+1x^2+1x+1)
R(x)=P(x)-Q(x)= 2x^3+1x+1x^2+2-1x^3+1x^2+1x+1
R(x)=P(x)-Q(x)= (2x^3-1x^3)+(1x+1x)+(1x^2+1x^2)+2+1
R(x)=P(x)-Q(x)= 1x^3+2x+2x^2+2+1
=> R(x)=1x^3+2x+2x^2+2+1
ahihi mik ko chắc nha !!!!
có j thì bn kiểm phép tính lại giùm mik vì mik hay quên mấy chỗ đó nha
x - 2x + 22x - 23x + 24x -.....+ 22006x - 22007x = 22008 - 1
x(1 - 2 + 22 - 23 + 24 -....+ 22006 - 22007) = 22008 - 1
Đặt M = 1 - 2 + 22 - 23 + 24 -....+ 22006 - 22007
2M = 2 - 22 + 23 - 24 + 25 -....+ 22007 - 22008
3M = 2M + M = 1 - 22008
=> M = \(\frac{1-2^{2008}}{3}\)
=> x . \(\frac{1-2^{2008}}{3}\) = 22008 - 1
=> x = (22008 - 1)\(\frac{1-2^{2008}}{3}\)
Đến đây chịu