Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải
a, Sau 3h, xe cách A:
s= 50t+10= 50.3+10= 160(km)
b, Thời gian để xe đi hết quãng đường AB là:
s= 50t+10= 235
<=> 5t= 225
<=> t= 4,5(h)
Gọi vận tốc của người đi xe máy trên 3/4 quãng đường AB đầu (90 km) là x (km/h) (x > 0)
Vận tốc của người đi xe máy trên 1/4 quãng đường AB sau là 0,5x (km/h)
Vận tốc của người đi xe máy khi quay trở lại A là x + 10 (km/h)
Tổng thời gian của chuyến đi là 90 x + 30 0 , 5 x + 120 x + 10 + 1 2 = 8 , 5
⇔ 90 x + 60 x + 120 x + 10 = 8 ⇔ 150 x + 120 x + 10 = 8 ⇔ 75 ( x + 10 ) + 60 x = 4 x ( x + 10 ) ⇔ 4 x 2 − 95 x − 750 = 0 ⇔ x = 30 ( d o x > 0 )
Vậy vận tốc của xe máy trên quãng đường người đó đi từ B về A là 30 + 10 = 40 (km/h)
Gọi x (km) là độ dài quãng đường AB, y (giờ) là thời gian dự định đi để đến B đúng lúc 12 giờ trưa.
Điều kiện x > 0, y > 1 (do ôtô đến B sớm hơn 1 giờ).
+ Với v = 35km/h thì thời gian đi hết quãng đường AB là : t = (giờ)
Ô tô đến chậm hơn 2 giờ so với dự định ⇒ ⇔ x = 35y + 70.
+ Với v = 50 km/h thì thời gian đi hết quãng đường AB là : (giờ)
Ô tô đến sớm hơn 1h so với dự định ⇒ ⇔ x = 50y – 50.
- Gọi x (km) là quãng đường dài AB , y (giờ) là thời gian dự định đi từ A để đến B lúc 12h trưa .
đk : x > 0 , y > 1 ( vì ô tô đến B sớm hơn 1h )
Ta có 2TH sau :
+) TH1 :
- Xe đi với vận tốc 35km/h
- Xe đến B chậm hơn 2 giờ nên thời gian đi hết là : y + 2 ( giờ )
- Quãng đường đi được là : 35(y+2) (km)
=> Quãng đường không đổi nên ta có PT : x = 35(y+2) (1)
+) Trường hợp 2:
Xe đi với vận tốc: 50 km/h
Vì xe đến B sớm hơn 1 giờ nên thời gian đi hết là: y−1 (giờ)
Quãng đường đi được là: 50(y−1) (km)
Vì quãng đường không đổi nên ta có phương trình: x = 50(y−1)) (2)
Từ (1) và (2) ta có hệ phương trình :
\(\hept{\begin{cases}x=35\left(y+2\right)\\x=50\left(y-1\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=35y+70\\x=50y-50\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-35y=70\left(1\right)\\x-50y=-50\left(2\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}15y=120\\x-50y=-50\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=8\\x=-50+50y\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=8\\x=-50+50.8\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=8\\x=350\end{cases}\left(TM\right)}\)
Vậy quãng đường AB là 350km.
Thời điểm xuất phát của ô tô tại A là: 12 − 8 = 4 giờ
Gọi vận tốc của xe lúc đầu là x (km/h) , chiều dài quãng đường AB là y (km) (x>10,y>0)
Theo đề bài :
Xin lỗi mình còn thiếu:
Hệ hương trình : \(\hept{\begin{cases}\frac{y}{x+10}=\frac{y}{x}-3\\\frac{y}{x-10}=\frac{y}{x}+5\end{cases}}\)
Giải ra được : x = 40 (TM) , y = 600 (TM)
Vậy vận tốc lúc đầu của xe là 40 km/h
Thời gian dự định là 15 giờ
Chiều dài quãng đường là 600 km
Gọi thời gian dự kiến mà xe ô tô sẽ đi từ A đến B là x(h)
(ĐIều kiện: x>0)
Độ dài quãng đường AB khi xe đi với vận tốc 35km/h là:
35(x+2)(km)
Độ dài quãng đường AB khi xe đi với vận tốc 50km/h là:
50(x-1)(km)
Do đó, ta có phương trình:
35(x+2)=50(x-1)
=>10(x-1)=7(x+2)
=>10x-10=7x+14
=>3x=24
=>x=8(nhận)
Thời điểm xuất phát của ô tô là:
12 giờ-8 giờ=4 giờ
Độ dài quãng đường AB là:
35(8+2)=35*10=350(km)
Đổi: 8% quãng đường =2/25 quãng đường
Xe A chạy hết quãng đườn trong: \(3.\left(1:\frac{2}{25}\right)=\frac{50}{3}\left(giờ\right)\)
Xe B chạy hết quãng đường trong: \(2,5.\left(1:\frac{7}{120}\right)=\frac{300}{7}\left(giờ\right)\)
Gọi Va là vận tốc xe A, Vb là vận tốc xe B
=> \(Va=\frac{3AB}{50}=\frac{18AB}{300};Vb=\frac{7AB}{300}\)
Thời gian 2 xe đi -> lúc gặp nhau:
\(AB:\left(\frac{18AB}{300}+\frac{7AB}{300}\right)=12\left(giờ\right)\)
Vận tốc xe đi từ A là : \(800:12=\frac{200}{3}\left(\frac{km}{h}\right)\)
Tương tự tính được độ dài quãng đường AB : \(\frac{200}{3}.\frac{50}{3}=\frac{1000}{9}\left(km\right)\)
Vận tốc xe đi từ B là: \(\frac{1000}{9}:\frac{300}{7}=\frac{70}{27}\left(\frac{km}{h}\right).\)
Sau 3 giờ xuất phát thì xe cách điểm A : 50.3+10 = 160 (km)
Sau 3 giờ xuất phát thì xe cách điểm B : 235 - 160 = 75 (km)
Có : 235 = 50t+10
<=> 50t = 235 - 10 = 225
Thời gian xe chạy hết quãng đường AB là : 225 : 50 = 4,5 (giờ)
k mk nha