Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a)Đổi : 15p = 1/4h, 30p = 1/2 h
Thời gian An đi là từ A đến B là:
6 : 12 = 1/2 (h)
Thời gian Bình đi từ A đến B là:
1/2 + 1/2 - 1/4 = 3/4 (h)
Vận tốc của Bình là:
6 : 3/4 = 8 (km/h)
b) Để đến nơi cùng lúc với An, Bình phải đi tới B với thời gian là :
1/2 - 1/4 = 1/4 (h)
Vậy Bình phải đi với vận tốc là :
6 : 1/4 = 24 (km/h)
Vận tốc trung bình trên quãng đường đầu là: \(v_1=\dfrac{s_1}{t_1}=\dfrac{500}{2.60+20}=\dfrac{25}{7}\left(\dfrac{m}{s}\right)\)
Vận tốc trung bình trên quãng đường còn lại là: \(v_2=\dfrac{s_2}{t_2}=\dfrac{400}{1.60+40}=4\left(\dfrac{m}{s}\right)\)
Vận tốc trung bình trên cả quãng đường là: \(v_{tb}=\dfrac{s_1+s_2}{t_1+t_2}=\dfrac{500+400}{2.60+20+1.60+40}=3,75\) (m/s)
vận tốc 10m/s là tổng vận tốc trên cả 2 quãng đường hay là đi đi trên 2 quãng đường với vận tốc 10m/s vậy b
Đổi 3,6km=3600m , 10p=600s ,5,4km=5400m
Vận tốc trong quãng đường đầu là
3600:600=6m/s
Vận tốc trên quãng đường 2 là
10-6=4m/s
Thời gian đi hết quãng 2 là
5400:4=1350s=22,5p
Tóm tắt
\(S=4km\)
\(t=30'=\frac{1}{2}h\)
\(V_1=2V_2\)
___________
\(V_1=?\)
Giải
Gọi \(S_1;S_2\) lần lượt là quãng đường đầu và quãng đường sau.
\(t_1;t_2\) lần lượt là thời gian đi quãng đường đầu và quãng đường sau.
Ta có: \(S_1=S_2=\frac{4}{2}=2\left(km\right)\Rightarrow V_1.t_1=V_2.t_2\Rightarrow\frac{V_1}{V_2}=\frac{t_2}{t_1}\Rightarrow\frac{t_2}{t_1}=2\Rightarrow t_2=2t_1\)
Mà \(t_1+t_2=\frac{1}{2}\Rightarrow3t_1=\frac{1}{2}\Rightarrow t_1=\frac{1}{6}\Rightarrow V_1=\frac{S_1}{t_1}=\frac{2}{\frac{1}{6}}=12\)(km/h)
Vậy Vận tốc của Huyền trên nửa đoạn đường đầu là 12 km/h
\(1min30s=100s\)
\(\left\{{}\begin{matrix}v_1=\dfrac{s_1}{t_1}=\dfrac{300}{100}=3\left(\dfrac{m}{s}\right)\\v_2=\dfrac{s_2}{t_2}=\dfrac{900}{200}=4,5\left(\dfrac{m}{s}\right)\\v_{tb}=\dfrac{s_1+s_2}{t_1+t_2}=\dfrac{300+900}{100+200}=4\left(\dfrac{m}{s}\right)\end{matrix}\right.\)
tóm tắt
\(s_1=300m\)
\(t_1=1'40s=100s\)
\(s_2=900m\)
\(t_2=200s\)
\(v_{tb}=?\)
giải
\(ADCT:v=\dfrac{s}{t};\) ta có:
vận tốc trung bình của Đào trên đoạn đường đầu là
\(\dfrac{300}{100}=3m/s\)
vận tốc trung bình của Đào trên đoạn thứ hai là
\(\dfrac{900}{200}=\dfrac{9}{2}=4,5m/s\)
\(ADCT:v_{tb}=\dfrac{s}{t};\) ta có:
\(v_{tb}=\dfrac{300+900}{100+200}=4m/s\)
Đáp án A
+ Vận tốc trung bình trên đoạn đường thứ nhất: v t b 1 = s 1 t 1 = 200 60 + 40 = 2m/s
+ Vận tốc trung bình trên đoạn đường thứ hai: v t b 2 = s 2 t 2 = 300 100 = 3m/s
+ Vận tốc trung bình trên cả đoạn đường là: v t b = s 1 + s 2 t 1 + t 2 = 200 + 300 100 + 100 = 2 , 5 m / s
Tóm tắt:
s1=200m
t1=1p40s=100s(nếu không tóm tắt thì lời giải đầu phải đổi:1p40s=100s)
s2=300m
t2=100s
vtb=?m/s
giải
Vận tốc trung bình trên đoạn đường thứ nhất:
vtb1 = s1 / t1 = 200/100 = 2m/s
Vận tốc trung bình trên đoạn đường thứ hai:
vtb2 = s2 / t2 = 300/100 = 3m/s
Vận tốc trung bình trên cả đoạn đường là:
vtb = s1 + s2 / t1 + t2 = 200 + 300 / 100 + 100 = 2,5 m / s
chọn A. 2m/s; 3m/s; 2,5m/s
\(s'=s''=\dfrac{1}{2}s=1,5\left(km\right)\)
\(\Rightarrow\left\{{}\begin{matrix}v'=s':t'=1,5:\dfrac{20}{60}=4,5\left(\dfrac{km}{h}\right)\\v''=s'':t''=1,5:\dfrac{40}{60}=2,25\left(\dfrac{km}{h}\right)\\v_{tb}=\dfrac{s'+s''}{t'+t''}=\dfrac{3}{\dfrac{20}{60}+\dfrac{40}{60}}=3\left(\dfrac{km}{h}\right)\end{matrix}\right.\)