K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

Ta có:

\(\begin{array}{l}a)\widehat {{O_1}} = 135^\circ ;\widehat {{O_3}} = 135^\circ  \Rightarrow \widehat {{O_1}} = \widehat {{O_3}}\\b)\widehat {{O_2}} = 45^\circ ;\widehat {{O_4}} = 45^\circ  \Rightarrow \widehat {{O_2}} = \widehat {{O_4}}\end{array}\)

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

a) Hai góc \(\widehat {xOy}\) và \(\widehat {yOz}\) có cạnh Oy chung, không có điểm trong chung

b) Ta có:

\(\begin{array}{l}\widehat {xOy} = 30^\circ ,\widehat {yOz} = 45^\circ ,\widehat {xOz} = 75^\circ \\ \Rightarrow \widehat {xOy} + \widehat {yOz} = \widehat {xOz}\end{array}\)

c) Ta có: \(\widehat {mOn} + \widehat {nOp} = 33^\circ  + 147^\circ  = 180^\circ \)

HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

a) Mỗi điểm M (M khác O) thuộc tia Oz đều là điểm trong của góc xOy. Tia Oz có nằm trong góc xOy

b) Vì Oz có nằm trong góc xOy nên

\(\begin{array}{l}\widehat {yOz} + \widehat {zOx} = \widehat {xOy}\\ \Rightarrow \widehat {yOz} + 45^\circ  = 90^\circ \\ \Rightarrow \widehat {yOz} = 90^\circ  - 45^\circ  = 45^\circ \end{array}\)

Vậy số đo góc yOz là 45 độ

c) \(\widehat {xOz} = \widehat {yOz}\) (cùng bằng \(45^o\))

5 tháng 10 2021

a) Tìm các cặp góc so le trong: P2 và Q3; P3 và Q2

b) Tìm các cặp góc trong cùng phía: P2 và Q2; Pvà Q3

c) Tìm các cặp góc đồng vị: Pvà Q2; p2 và Q1; P3 và Q4' p4 và Q3

d) Tính số đo góc P4:

Ta có: Q2 = P= 50o ( 2 góc đồng vị)

Mà P4 + P1 = 180o ( 2 góc kề bù)

P4 = 180o - P1

P4 = 180o - 50o = 130o

 

HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

a) Vì \(\widehat {{A_1}} + \widehat {{A_2}} = 180^\circ \) ( 2 góc kề bù) nên \(117^\circ  + \widehat {{A_2}} = 180^\circ  \Rightarrow \widehat {{A_2}} = 180^\circ  - 117^\circ  = 63^\circ \)

Vì \(\widehat {{A_2}} = \widehat {{D_1}}\) ( cùng bằng 63 độ)

Mà 2 góc này ở vị trí đồng vị

\( \Rightarrow \) a // b (Dấu hiệu nhận biết hai đường thẳng song song) ( đpcm)

b) Vì a // b nên \(\widehat {{B_1}} = \widehat {BCD}\) ( 2 góc so le trong), mà \(\widehat {{B_1}} = 55^\circ  \Rightarrow \widehat {BCD} = 55^\circ \)

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

a) Các góc kề với \(\widehat {tOz}\)là: \(\widehat {zOy},\widehat {zOn},\widehat {zOm}\)

b) Ta có: \(\widehat {mOn}\) = 30\(^\circ \) nên góc kề bù với \(\widehat {mOn}\) có số đo là: 180\(^\circ \) - 30\(^\circ \) = 150\(^\circ \)

c) Ta có:

\(\begin{array}{l}\widehat {mOn} + \widehat {nOy} + \widehat {yOt} = 180^\circ \\ \Rightarrow 30^\circ  + \widehat {nOy} + 90^\circ  = 180^\circ \\ \Rightarrow \widehat {nOy} = 180^\circ  - 30^\circ  - 90^\circ  = 60^\circ \end{array}\)

Vậy \(\widehat {nOy} = 60^\circ \)

d) Ta có: \(\widehat {tOz} = 45^\circ \) nên góc kề bù với \(\widehat {tOz}\) có số đo là: 180\(^\circ \) - 45\(^\circ \) = 135\(^\circ \)

HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

a) Các cặp góc đồng vị bằng nhau là: góc mAn và xEn; góc mAz và xEz; góc nAq và nEt; góc qAz và tEz; góc pBq và pDt; góc qBy và tDy; góc mBy và xDy; góc pBm và pDx

b) Vì mq // xt nên \(\widehat {BAC} = \widehat {zEt}\) ( 2 góc đồng vị) nên \(\widehat {BAC} = 45^\circ \).

Vì mq // xt nên \(\widehat {CDE} = \widehat {ABC}\) ( 2 góc so le trong) nên \(\widehat {CDE} = 37^\circ \).

c)

Bạn Nam nói đúng vì:

Vì c // mq nên \(\widehat {ABC} = \widehat {{C_1}}\) ( 2 góc so le trong) nên \(\widehat {{C_1}} = 37^\circ \)

Vì c // xt nên \(\widehat {CED} = \widehat {{C_2}}\) ( 2 góc so le trong) nên \(\widehat {{C_2}} = 45^\circ \)

Vì \(\widehat {{C_1}} + \widehat {{C_2}} = \widehat {BCE}\) nên \(\widehat {BCE} = \widehat {{C_1}} + \widehat {{C_2}} = 37^\circ  + 45^\circ  = 82^\circ \)

HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

a) Trong tam giác ABC có \(\widehat B = 90^\circ \)mà tổng ba góc trong một tam giác bằng 180°.

\(\Rightarrow\) Góc C < 90°. Hay \(\widehat B > \widehat C\).

b) Ta có: \(AB = 3\)cm, \(AC = 5\) cm. Vậy AB < AC.

HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

a) Trong tam giác ABC:

 \(AB = 3\) cm, \(AC = 5\) cm.

Vậy AB < AC.

b) Trong tam giác ABC có \(\widehat B = 90^\circ \)mà tổng ba góc trong một tam giác bằng 180°.

\(\Rightarrow\)  Góc C < 90°. Hay \(\widehat B > \widehat C\).