K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2018

\(Q=\left(\frac{x^2+1}{x+1}-1\right)\left(\frac{4}{x-1}-\frac{2}{x}\right)=\left(\frac{x^2+1-\left(x+1\right)}{x+1}\right)\left(\frac{4x-2\left(x-1\right)}{x\left(x-1\right)}\right)\)

    \(=\left(\frac{x^2+1-x-1}{x+1}\right)\left(\frac{4x-2x+2}{x\left(x-1\right)}\right)=\left(\frac{x^2-x}{x+1}\right)\left(\frac{2\left(x+1\right)}{x\left(x-1\right)}\right)=\frac{2x\left(x+1\right)\left(x-1\right)}{x\left(x-1\right)\left(x+1\right)}=2\)

Vậy Q = 2

21 tháng 7 2018

Hình như đề là rút gọn thì phải.

Giải

\(Q=\left(\frac{x^2+1}{x+1}-1\right)\left(\frac{4}{x-1}-\frac{2}{x}\right)\)

\(=\left(\frac{x^2}{x}-1\right)\left(\frac{4}{x-1}-\frac{2}{x}\right)=\left(x-1\right)\left(\frac{4}{x-1}-\frac{2}{x}\right)\)

\(=\frac{4\left(x-1\right)}{x-1}-\frac{2\left(x-1\right)}{x}=4-\frac{2x-2}{x}\)

15 tháng 9 2018

a) = \(12a^2b\left(a^2-b^2\right)\)

\(12a^4b-12a^2b^3\)

b)nhân ra :

\(2x^4-16x^3+4x^2-3x^3+24x^2-6x+5x^2-40x+10\)

\(2x^4-19x^3+33x^2-46x+10\)

Tìm x:

a) \(\frac{1}{4}x^2-\left(\frac{1}{4}x^2-2x\right)=-14\)

\(\frac{1}{4}x^2-\frac{1}{4}x^2+2x=-14\)

=\(2x=-14=>x=-7\)

b) \(x^3+27-x\left(x^2-1\right)=27\)

\(x^3+27-x^3+x=27\)

\(27+x=27=>x=0\)

16 tháng 1 2019

\(x\left(\frac{1}{y}+\frac{1}{z}\right)+y\left(\frac{1}{z}+\frac{1}{x}\right)+z\left(\frac{1}{x}+\frac{1}{y}\right)=-2\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

Ta lại có: 

\(x^3+y^3+z^3=\left(x+y+z\right)^3-3\left(x+y\right)\left(y+z\right)\left(z+x\right)=\left(x+y+z\right)^3=1\)

\(\Leftrightarrow x+y+z=1\)

Làm nốt

NV
19 tháng 2 2020

a/ - Với \(x\ge1\):

\(\Leftrightarrow x^2-3x+2+x-1=0\)

\(\Leftrightarrow x^2-2x+1=0\Rightarrow x=1\)

- Với \(x< 1\)

\(\Leftrightarrow x^2-3x+2+1-x=0\)

\(\Leftrightarrow x^2-4x+3=0\Rightarrow\left[{}\begin{matrix}x=1\left(l\right)\\x=3\left(l\right)\end{matrix}\right.\)

Vậy pt có nghiệm duy nhất \(x=1\)

b/ ĐKXĐ: ...

\(\Leftrightarrow8\left(x^2+\frac{1}{x^2}+2\right)+4\left(x^2+\frac{1}{x^2}\right)^2-4\left(x^2+\frac{1}{x^2}\right)\left(x^2+\frac{1}{x^2}+2\right)=\left(x+4\right)^2\)

\(\Leftrightarrow8\left(x^2+\frac{1}{x^2}\right)+16+4\left(x^2+\frac{1}{x^2}\right)^2-4\left(x^2+\frac{1}{x^2}\right)^2-8\left(x^2+\frac{1}{x^2}\right)=\left(x+4\right)^2\)

\(\Leftrightarrow\left(x+4\right)^2=16\Rightarrow\left[{}\begin{matrix}x+4=4\\x+4=-4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\left(l\right)\\x=-8\end{matrix}\right.\)

13 tháng 7 2019

câu a) sáng giải

b) \(\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\ge\frac{\left(x+\frac{1}{x}+y+\frac{1}{y}\right)^2}{2}=\frac{4^2}{2}=8>4\) vô nghiệm 

14 tháng 7 2019

a) ĐK: \(x,y\ne-1\)

\(\hept{\begin{cases}x^2+y^2+x+y=\left(x+1\right)\left(y+1\right)\left(1\right)\\\left(\frac{x}{y+1}\right)^2+\left(\frac{y}{x+1}\right)^2=1\left(2\right)\end{cases}}\)

(1) \(\Leftrightarrow\)\(\frac{x^2+x}{\left(x+1\right)\left(y+1\right)}+\frac{y^2+y}{\left(x+1\right)\left(y+1\right)}=1\)

\(\Leftrightarrow\)\(\frac{x\left(x+1\right)}{\left(x+1\right)\left(y+1\right)}+\frac{y\left(y+1\right)}{\left(x+1\right)\left(y+1\right)}=1\)

\(\Leftrightarrow\)\(\frac{x}{y+1}+\frac{y}{x+1}=1\) (3) 

(2) \(\Leftrightarrow\)\(\left(\frac{x}{y+1}+\frac{y}{x+1}\right)^2-\frac{2xy}{\left(x+1\right)\left(y+1\right)}=1\)

\(\Leftrightarrow\)\(2xy=\left(x+1\right)\left(y+1\right)\)

Lại có: \(\left(\frac{x}{y+1}\right)^2+\left(\frac{y}{x+1}\right)^2\ge2\sqrt{\left(\frac{xy}{\left(x+1\right)\left(y+1\right)}\right)^2}=2\sqrt{\frac{1}{4}}=1\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\frac{x}{y+1}=\frac{y}{x+1}\)

\(\Rightarrow\)\(\hept{\begin{cases}\frac{2x}{y+1}=1\\2\left(\frac{x}{y+1}\right)^2=1\end{cases}\Leftrightarrow\left(\frac{x}{y+1}\right)^2-\frac{x}{y+1}=0\Leftrightarrow\frac{x}{y+1}\left(\frac{x}{y+1}-1\right)=0}\)

\(\Rightarrow\)\(\orbr{\begin{cases}\frac{x}{y+1}=0\\\frac{x}{y+1}-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0;y=1\\x=y+1\end{cases}\Leftrightarrow}x=y+1}\)

Thay x=y+1 vào (3) ta được: \(\frac{y}{x+1}=0\)\(\Leftrightarrow\)\(y=0\)\(\Rightarrow\)\(x=1\) ( tương tự với y ta cũng được x=0;y=1 ) 

tập nghiệm của pt \(\left(x,y\right)=\left\{\left(0;1\right),\left(1;0\right)\right\}\)

b) ĐK: \(x,y\ne0\) còn cách khác là dùng cosi nhé, VD: \(\hept{\begin{cases}x+\frac{1}{x}+y+\frac{1}{y}=4\left(1\right)\\\left(x+\frac{1}{2}\right)^2+\left(y+\frac{1}{y}\right)^2=4\left(2\right)\end{cases}}\)

lấy (1) + (2) và cộng 2 vào 2 vế của pt mới ta được: 

\(10=a^2+1+b^2+1+\left(a+b\right)\ge2\sqrt{a^2}+2\sqrt{a^2}+4=12\)

\(\Rightarrow\)\(10\ge12\) (vô lí) => hpt vô nghiệm 

24 tháng 7 2021

\(ĐKXĐ:x\ne2;x\ne-2;x\ne0\)

\(a,P=\left(\frac{-1}{2-x}-\frac{2x}{4-x^2}+\frac{1}{2+x}\right)\left(\frac{2}{x}-1\right)\)

\(P=\left(\frac{-2-x+2-x-2x}{\left(2-x\right)\left(2+x\right)}\right)\left(\frac{2-x}{x}\right)\)

\(P=\frac{-4x}{\left(2-x\right)\left(2+x\right)}\frac{2-x}{x}\)

\(P=\frac{-4}{2+x}\)

\(b,P=\frac{-4}{2+x}=\frac{1}{2}\)

\(2+x=-8\)

\(x=-10\)

\(c,P=-\frac{4}{2+x}\)

\(< =>-4⋮x+2\)

lập bảng ra thì bạn ra đc \(x=\left\{2;-1;-3;-6\right\}\)

24 tháng 7 2021

a)\(P=\left(\frac{1}{x-2}-\frac{2x}{4-x^2}+\frac{1}{2+x}\right)\left(\frac{2}{x}-1\right)\)

\(P=\left(\frac{1}{x-2}+\frac{2x}{\left(x+2\right)\left(x-2\right)}+\frac{1}{2+x}\right).\frac{2-x}{x}\)

\(P=\frac{x+2+2x+x-2}{\left(x-2\right)\left(x+2\right)}.\frac{2-x}{x}\)

\(P=\frac{4x}{\left(x-2\right)\left(x+2\right)}.\frac{2-x}{x}\)

\(P=\frac{-4}{x+2}\)

b) Để P=1/2

\(\Rightarrow-\frac{4}{x+2}=\frac{1}{2}\)

\(\Leftrightarrow-8=x+2\)

\(\Leftrightarrow x=-10\)

c) Để P nhận GT nguyên

\(\Rightarrow\left(x+2\right)\inƯ_{\left(-4\right)}\)

\(\Rightarrow\left(x+2\right)\in\left\{-1;1;-2;2;-4;4\right\}\)

\(\Rightarrow x=\left\{-3;-1;-4;0;-6;2\right\}\)

#H

11 tháng 11 2018

\(A=\left(\sqrt{x}+2\right):\left(\frac{x+8}{x\sqrt{x}+8}+\frac{\sqrt{x}}{x-2\sqrt{x}+4}-\frac{1}{2+\sqrt{x}}\right)\)

\(=\left(\sqrt{x}+2\right):\left(\frac{x+8+\sqrt{x}\left(\sqrt{x}+2\right)-\left(x-2\sqrt{x}+4\right)}{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)}\right)\)

\(=\left(\sqrt{x}+2\right):\left(\frac{x+8+x+2\sqrt{x}-x+2\sqrt{x}-4}{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)}\right)\)

\(=\left(\sqrt{x}+2\right):\left(\frac{x+4\sqrt{x}+4}{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)}\right)\)

\(=\left(\sqrt{x}+2\right):\left[\frac{\left(\sqrt{x}+2\right)^2}{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)}\right]\)

\(=\left(\sqrt{x}+2\right):\frac{\sqrt{x}+2}{x-2\sqrt{x}+4}\)

\(=\frac{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)}{\sqrt{x}+2}\)

\(=x-2\sqrt{x}+4\)

=.= hok tốt!!

24 tháng 6 2017

Thiếu điều kiện xy = 1; x+y khác 0 nhá bn

Bài này tương tự câu 1 ở đây