Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ĐKXĐ: x<>-1
b: \(P=\left(1-\dfrac{x+1}{x^2-x+1}\right)\cdot\dfrac{x^2-x+1}{x+1}\)
\(=\dfrac{x^2-x+1-x-1}{x^2-x+1}\cdot\dfrac{x^2-x+1}{x+1}=\dfrac{x^2-2x}{x+1}\)
c: P=2
=>x^2-2x=2x+2
=>x^2-4x-2=0
=>\(x=2\pm\sqrt{6}\)
\(\text{a) }ĐKXĐ:x\ne2;x\ne3\\ \Rightarrow Q=\dfrac{2x-9}{x^2-5x+6}-\dfrac{x+3}{x-2}+\dfrac{2x+1}{x-3}\\ =\dfrac{2x-9}{\left(x-2\right)\left(x-3\right)}-\dfrac{\left(x+3\right)\left(x-3\right)}{\left(x-2\right)\left(x-3\right)}+\dfrac{\left(2x+1\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}\\ =\dfrac{2x-9-x^2+9+2x^2+x-4x-2}{\left(x-2\right)\left(x-3\right)}\\ =\dfrac{x^2-x-2}{\left(x-2\right)\left(x-3\right)}=\dfrac{x^2-2x+x-2}{\left(x-2\right)\left(x-3\right)}\\ =\dfrac{\left(x^2-2x\right)+\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}=\dfrac{x\left(x-2\right)+\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}\\ =\dfrac{\left(x+1\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}=\dfrac{x+1}{x-3}\)
Vậy \(Q=\dfrac{x+1}{x-3}\) với \(x\ne2;x\ne3\)
b) Với \(x\ne2;x\ne3\)
Để \(\left|Q\right|=1\)
thì \(\Rightarrow\left|\dfrac{x+1}{x-3}\right|=1\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{x+1}{x-3}=-1\\\dfrac{x+1}{x-3}=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x+1=3-x\\x+1=x-3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x+x=3-1\\x-x=-3-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=2\\0x=-4\left(\text{ Vô nghiệm }\right)\end{matrix}\right.\\ \Leftrightarrow x=1\left(T/m\right)\)
Vậy để \(\left|Q\right|=1\)
thì \(x=1\)
c) Với \(x\ne2;x\ne3\)
\(\text{Ta có : }Q=\dfrac{x+1}{x-3}=\dfrac{x-3+4}{x-3}\\ =\dfrac{x-3}{x-3}+\dfrac{4}{x-3}=1+\dfrac{4}{x-3}\)
\(\Rightarrow\) Để Q nhận giá trị nguyên
thì \(\Rightarrow\dfrac{4}{x-3}\in Z\)
\(\Rightarrow4⋮x-3\\ \Rightarrow x-3\inƯ_{\left(4\right)}\\ \Rightarrow x-3\in\left\{\pm1;\pm2;\pm4\right\}\)
Lập bảng giá trị:
\(x-3\) | \(-4\) | \(-2\) | \(-1\) | \(1\) | \(2\) | \(4\) |
\(x\) | \(-1\left(T/m\right)\) | \(1\left(T/m\right)\) | \(2\left(K^0\text{ }T/m\right)\) | \(4\left(T/m\right)\) | \(5\left(T/m\right)\) | \(7\left(T/m\right)\) |
Vậy để Q nhận giá trị nguyên
thì \(x\in\left\{-1;1;4;5;7\right\}\)
d) Với \(x\ne2;x\ne3\)
Để \(Q\) nhận giá trị âm
thì \(\Rightarrow\dfrac{x+1}{x-3}< 0\)
Lập bảng xét dấu:
\(\Rightarrow-1< x< 3\)
Vậy để \(Q\) nhận giá trị âm
thì \(-1< x< 3;x\ne2\)
a: \(=\dfrac{2x-9-x^2+9+2x^2-4x+x-2}{\left(x-3\right)\left(x-2\right)}\)
\(=\dfrac{x^2-x-2}{\left(x-3\right)\left(x-2\right)}=\dfrac{x+1}{x-3}\)
b: |Q|=1
=>x+1/x-3=1 hoặc x+1/x-3=-1
=>x+1=x-3 hoặc x+1=3-x
=>2x=2 và 1=-3(loại)
=>x=1(nhận)
c: Q nguyên khi x-3+4 chia hết cho x-3
=>\(x-3\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(x\in\left\{4;;5;1;7;-1\right\}\)
Bài 1:
\(a,ĐK:x\ne\pm5\\ b,P=\dfrac{x-5+2x+10-2x-10}{\left(x-5\right)\left(x+5\right)}=\dfrac{x-5}{\left(x-5\right)\left(x+5\right)}=\dfrac{1}{x+5}\\ c,P=-3\Leftrightarrow x+5=-\dfrac{1}{3}\Leftrightarrow x=-\dfrac{16}{3}\\ d,P\in Z\Leftrightarrow x+5\inƯ\left(1\right)=\left\{-1;1\right\}\\ \Leftrightarrow x\in\left\{-6;-4\right\}\)
Bài 2:
\(a,\Leftrightarrow\dfrac{3\left(x^2+2x+4\right)}{\left(x-2\right)\left(x^2+2x+4\right)}=\dfrac{3}{x-2}=0\Leftrightarrow x\in\varnothing\\ b,\Leftrightarrow\dfrac{x\left(2-x\right)}{\left(x-2\right)\left(x+2\right)}=0\Leftrightarrow\dfrac{-x}{x+2}=0\Leftrightarrow x=0\)
a,ĐK: \(\hept{\begin{cases}x\ne0\\x\ne\pm3\end{cases}}\)
b, \(A=\left(\frac{9}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x+3}\right):\left(\frac{x-3}{x\left(x+3\right)}-\frac{x}{3\left(x+3\right)}\right)\)
\(=\frac{9+x\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}:\frac{3\left(x-3\right)-x^2}{3x\left(x+3\right)}\)
\(=\frac{x^2-3x+9}{x\left(x-3\right)\left(x+3\right)}.\frac{3x\left(x+3\right)}{-x^2+3x-9}=\frac{-3}{x-3}\)
c, Với x = 4 thỏa mãn ĐKXĐ thì
\(A=\frac{-3}{4-3}=-3\)
d, \(A\in Z\Rightarrow-3⋮\left(x-3\right)\)
\(\Rightarrow x-3\inƯ\left(-3\right)=\left\{-3;-1;1;3\right\}\Rightarrow x\in\left\{0;2;4;6\right\}\)
Mà \(x\ne0\Rightarrow x\in\left\{2;4;6\right\}\)
a) P xác định \(\Leftrightarrow\hept{\begin{cases}2x+10\ne0\\x\ne0\\2x\left(x+5\right)\ne0\end{cases}\Leftrightarrow x\ne\left\{-5;0\right\}}\)
b) \(P=\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}\)
\(P=\frac{x^2\left(x+2\right)}{2x\left(x+5\right)}+\frac{2\left(x-5\right)\left(x+5\right)}{2x\left(x+5\right)}+\frac{5\left(10-x\right)}{2x\left(x+5\right)}\)
\(P=\frac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}\)
\(P=\frac{x^3+4x^2-5x}{2x\left(x+5\right)}\)
\(P=\frac{x^3+5x^2-x^2-5x}{2x\left(x+5\right)}\)
\(P=\frac{x^2\left(x+5\right)-x\left(x+5\right)}{2x\left(x+5\right)}\)
\(P=\frac{\left(x+5\right)\left(x^2-x\right)}{2x\left(x+5\right)}\)
\(P=\frac{x\left(x-1\right)}{2x}\)
\(P=\frac{x-1}{2}\)
c) Để P = 0 thì \(x-1=0\Leftrightarrow x=1\)( thỏa mãn ĐKXĐ )
Để P = 1/4 thì \(\frac{x-1}{2}=\frac{1}{4}\)
\(\Leftrightarrow4\left(x-1\right)=2\)
\(\Leftrightarrow4x-4=2\)
\(\Leftrightarrow4x=6\)
\(\Leftrightarrow x=\frac{3}{2}\)( thỏa mãn ĐKXĐ )
d) Để P > 0 thì \(\frac{x-1}{2}>0\)
Mà 2 > 0, do đó để P > 0 thì \(x-1>0\Leftrightarrow x>1\)
Để P < 0 thì \(\frac{x-1}{2}< 0\)
Mà 2 > 0, do đó để P < 0 thì \(x-1< 0\Leftrightarrow x< 1\)
a) ĐKXĐ: \(x\ne-10;x\ne0;x\ne-5\)
b) \(P=\dfrac{x^2+2x}{2x+20}+\dfrac{x-5}{x}+\dfrac{50-5x}{2x\left(x+5\right)}\)
\(=\dfrac{x^2+2x}{2\left(x+10\right)}+\dfrac{x-5}{x}+\dfrac{50-5x}{2x\left(x+5\right)}\)
\(=\dfrac{x\left(x^2+2x\right)\left(x+5\right)}{2x\left(x+10\right)\left(x+5\right)}+\dfrac{2\left(x-5\right)\left(x+10\right)}{2x\left(x+10\right)\left(x+5\right)}+\dfrac{\left(50-5x\right)\left(x+10\right)}{2x\left(x+5\right)\left(x+10\right)}\)
\(=\dfrac{x^4+7x^3+10x^2+2x^2+10x-100+500-5x^2}{2x\left(x+10\right)\left(x+5\right)}\)
\(=\dfrac{x^4+7x^3+7x^2+10x+400}{2x\left(x+10\right)\left(x+5\right)}\)
c) \(P=0\Rightarrow x^4+7x^3+7x^2+10x+400=0\Leftrightarrow...\)
Số xấu thì câu c, d làm cũng như không. Bạn xem lại đề.