K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2015

x+y+z=0

<=>x+y=-z

<=>x^3+3xy(x+y)+y^3=-z^3

<=>x^3+y^3+z^3=-3xy(x+y)

Mà x+y=-z

=>đccm

10 tháng 7 2019

x+y+z= 0
x+y=-z
(x+y)^3 =-z^3
x^3 +y^3 +3xy(x+y) =-z^3
x^3 +y^3 +3xy(-z) =-z^3
x^3 +y^3 -3xyz =-z^3
x^3 +y^3 + z^3 =3xyz => dpcm

20 tháng 7 2017

Ta có: \(x+y+z=0\Leftrightarrow x+y=-z\)

\(\Leftrightarrow\left(x+y\right)^3=\left(-z\right)^3\)

\(\Leftrightarrow x^3+3x^2y+3xy^2+y^3=-z^3\)

\(\Leftrightarrow x^3+y^3+z^3=-3x^2y-3xy^2\)

\(\Leftrightarrow x^3+y^3+z^3=-3xy\left(x+y\right)\)

\(\Leftrightarrow x^3+y^3+z^3=-3xy\left(-z\right)=3xyz\)(đpcm)

3 tháng 10 2018

a,Ta có: 
x³ + y³ + z³ - 3xyz
= (x+y)³ - 3xy(x-y) + z³ - 3xyz 
= [(x+y)³ + z³] - 3xy(x+y+z) 
= (x+y+z)³ - 3z(x+y)(x+y+z) - 3xy(x-y-z) 
= (x+y+z)[(x+y+z)² - 3z(x+y) - 3xy] 
= (x+y+z)(x² + y² + z² + 2xy + 2xz + 2yz - 3xz - 3yz - 3xy) 
= (x+y+z)(x² + y² + z² - xy - xz - yz)

b, Từ: 
x + y + z = 0 
=> x + y = -z 
<=> (x + y)^3 = (-z)^3 
<=> x^3 + 3x^2y + 3xy^2 + y^3 = -z^3 
<=> x^3 + y^3 + z^3 = -3x^2y - 3xy^2 
<=> x^3 + y^3 + z^3 = -3xy(x+y) 
<=> x^3 + y^3 + z^3 = -3xy(-z) 
<=> x^3 + y^3 + z^3 = 3xyz 

= ( x3 + 3x2 y +3xy2 + y3 ) + z3 - 3 x 2 y - 3xy2 - 3xyz

= ( x + y ) 3 + z3 ] - 3xy x ( x + y + z )

= ( x + y + z ) x [ ( x + y ) 2 - z ( x + y ) + z2 ] - 3xy x ( x + y + z )

= ( x + y + z ) x ( x2 + 2xy + y2 + zx - zy + z2 - 3xy )

= ( x + y + z ) . ( x2 + y+ z2 - xy - yz - zx )

29 tháng 6 2016

Liên quan thế từ x + y + z sang a +b +c

13 tháng 7 2017

Xét \(A=x^3+y^3+z^3-3xyz\)

\(=\left(x^3+3x^2y+3xy^2+y^3\right)+z^3-3x^2y-3xy^2-3xyz\)

\(=\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz+yz+z^2\right)-3xy\left(x+y+z\right)\)

Với \(x+y+z=0\) thì  \(A=0.\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy.0=0\)

\(A=x^3+y^3+z^3-3xyz=0\Rightarrow x^3+y^3+z^3=3xyz\) (đpcm)

13 tháng 7 2017

x+y+z=0=> (x+y+z)(x2+y2+z2-xy-yz-zx)=0 (*)

Nhân (*) ra được :

x3+y3+z3-3xyz=0<=> x3+y3+z3= 3xyz(đpcm)

9 tháng 8 2016

Ta có \(x^3+y^3+z^3=3xyz\)

\(\Leftrightarrow\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2+2xy-xz-yz\right)-3xy\left(x+y+z\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)\left[\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)\right]=0\)(Nhân hai vế với 2)

\(\Leftrightarrow\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]=0\)

Tới đây bạn xét hai trường hợp nhé :)

9 tháng 8 2016

(x+y+z)((X+Y)^2-Z(X+Y))-3XY(X+Y+Z)

=(X+Y+Z)(X^2+2XY+Y^2-XZ-YZ-3XY)

=(X+Y+Z)(X^2+Y^2+Z^2-XZ-YZ-XY)

AH
Akai Haruma
Giáo viên
17 tháng 7 2019

Bạn tham khảo tại link sau:

Câu hỏi của Lenkin san - Toán lớp 8 | Học trực tuyến