Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn viết lại đề được ko? Ko hiểu \(\frac{x'+x}{x}\) với \(x\ne0\) là gì
Các câu dưới cũng có kí hiệu này, chắc bạn viết nhầm sang kí hiệu nào đó, nó cũng ko phải kí hiệu đạo hàm
a) f(x) liên tục tại x0 = -2
Vì \(\lim\limits_{x\rightarrow-2}f\left(x\right)=f\left(-2\right)=25\)
b) Có: \(\lim\limits_{x\rightarrow\frac{1}{2}}f\left(x\right)=\lim\limits_{x\rightarrow\frac{1}{2}}\frac{\left(2x-1\right)\left(2x+1\right)}{2x-1}=\lim\limits_{x\rightarrow\frac{1}{2}}\left(2x+1\right)=2\)
mà \(f\left(\frac{1}{2}\right)=3\)
=> \(\lim\limits_{x\rightarrow\frac{1}{2}}f\left(x\right)\ne f\left(\frac{1}{2}\right)\)
=> f(x) gián đoạn tại x0 = 1/2
c) \(\lim\limits_{x\rightarrow2-}f\left(x\right)=\lim\limits_{x\rightarrow2-}=\lim\limits_{x\rightarrow2-}\left(2x^2+x-1\right)=9\)
\(f\left(2\right)=3.2-5=1\)
Vì \(\lim\limits_{x\rightarrow2-}f\left(x\right)\ne f\left(2\right)\)
nên f(x) gián đoạn tại x0 = 2
a) Các bạn tự vẽ hình nhé . Đồ thị hàm số y = f(x) là một đường không liền nét mà bị đứt quãng tại x0 = -1. Vậy hàm số đã cho liên tục trên khoảng (-∞; -1) và (- 1; +∞).
b) +) Nếu x < -1: f(x) = 3x + 2 liên tục trên (-∞; -1) (vì đây là hàm đa thức).
+) Nếu x> -1: f(x) = x2 – 1 liên tục trên (-1; +∞) (vì đây là hàm đa thức).
+) Tại x = -1;
Ta có == 3(-1) +2 = -1.
= (-1)2 – 1 = 0.
Vì nên không tồn tại . Vậy hàm số gián đoạn tại
x0 = -1.
TenAnh1 TenAnh1 A = (-0.04, -7.12) A = (-0.04, -7.12) A = (-0.04, -7.12) B = (15.32, -7.12) B = (15.32, -7.12) B = (15.32, -7.12) D = (10.58, -5.6) D = (10.58, -5.6) D = (10.58, -5.6)
a) Ta có = 22 +2.2 +4 = 12.
Vì nên hàm số y = g(x) gián đoạn tại x0 = 2.
b) Để hàm số y = f(x) liên tục tại x0 = 2 thì ta cần thay số 5 bởi số 12
\(\lim\limits_{x\rightarrow0}\left|f\left(x\right)\right|=\lim\limits_{x\rightarrow0}\left|x^2sin\dfrac{1}{x}\right|< \lim\limits_{x\rightarrow0}\left|x^2\right|=0\).
Vậy \(\lim\limits_{x\rightarrow0}f\left(x\right)=0\).
\(f\left(0\right)=A\).
Để hàm số liên tục tại \(x=0\) thì \(\lim\limits_{x\rightarrow0}f\left(x\right)=f\left(0\right)\Leftrightarrow A=0\).
Để xét hàm số có đạo hàm tại \(x=0\) ta xét giới hạn:
\(\lim\limits_{x\rightarrow0}\dfrac{f\left(x\right)-f\left(0\right)}{x-0}=\lim\limits_{x\rightarrow0}\dfrac{x^2sin\dfrac{1}{x}}{x}=\lim\limits_{x\rightarrow0}xsin\dfrac{1}{x}=0\).
Vậy hàm số có đạo hàm tại \(x=0\).
a) TXĐ: R
+) Với x \(\ne\) 1, f(x) = \(\frac{2x^2-x-1}{x-1}\) liên tục trên mỗi khoảng ( -\(\infty\); 1) và ( 1; +\(\infty\))
+) Với x = 1
Ta có: f(1) = 3
và \(\lim\limits_{x\rightarrow1}f\left(x\right)=\lim\limits_{x\rightarrow1}\frac{2x^2-x-1}{x-1}=\lim\limits_{x\rightarrow1}\left(2x+1\right)=3\)
Vì f(1) = \(\lim\limits_{x\rightarrow1}f\left(x\right)\)
=> Hàm số f(x) liên tục tại điểm x = 1
Vậy f(x) liên tục trên R
b) TXĐ: R
+) Với x > 1
Có: f(x) = \(\frac{\sqrt{5x-1}-2}{x-1}\) liên tục trên ( 1; + \(\infty\))
+) Với x < 1
Có: f(x) = -6x + 5 liên tục trên ( - \(\infty\) ; 1 )
+) Với x = 1
f(1) = - 1
\(\lim\limits_{x\rightarrow1-}f\left(x\right)=\lim\limits_{x\rightarrow1-}\left(-6x+5\right)=-1\)
\(\lim\limits_{x\rightarrow1+}f\left(x\right)=\lim\limits_{x\rightarrow1+}\frac{\sqrt{5x-1}-2}{x-1}=\lim\limits_{x\rightarrow1+}\frac{5}{\sqrt{5x-1}+2}=\frac{5}{4}\)
Vì \(f\left(1\right)=\lim\limits_{x\rightarrow1-}f\left(x\right)\ne\lim\limits_{x\rightarrow1+}f\left(x\right)\)
=> f(x) gian đoạn tại x =1
Vậy: f(x) liên tục trên mỗi khoảng ( -\(\infty\); 1) và ( 1; +\(\infty\)) và gián đoạn tại x = 1
Lời giải:
\(\lim\limits_{x\to 1+}f(x)=\lim\limits_{x\to 1+}(5x-2)=3\)
\(\lim \limits_{x\to 1-}f(x)=\lim \limits_{x\to 1-}(2+2x)=4\)
\(\Rightarrow \lim\limits_{x\to 1+}f(x)\neq \lim \limits_{x\to 1-}f(x)\)
Do đó hàm số không liên tục tại $x=1$
\(\lim\limits_{x\rightarrow1^-}f\left(x\right)=\lim\limits_{x\rightarrow1^-}2x+2=2\cdot1+2=4\)
\(\lim\limits_{x\rightarrow1^+}f\left(x\right)=\lim\limits_{x\rightarrow1^+}5x-2=5-2=3\)
\(f\left(1\right)=2+2\cdot2=4\)
Vì \(\lim\limits_{x\rightarrow1^-}f\left(x\right)< >\lim\limits_{x\rightarrow1^+}f\left(x\right)\)
nên hàm số bị gián đoạn tại x=1