K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2017

lời giải

a) Hàm chẵn

b) f(x) =f(-x)=>hàm chẵn

c) không chẵn, không lẻ

d)f(-x) =\(\dfrac{-x^4+x^2+1}{-x}=-\dfrac{-x^4+x^2+1}{x}=-f\left(x\right)\) =>hàm lẻ

24 tháng 4 2017

a) y vừa là hàm số chẵn, vừa là hàm số lẻ.
b) TXĐ: R tự đối xứng.
\(y\left(-x\right)=3\left(-x\right)^2-1=3x^2-1=y\left(x\right)\).
Vậy y là hàm số chẵn.
c) TXĐ: R tự đối xứng.
\(y\left(-x\right)=-\left(-x\right)^4+3\left(-x\right)-2=-x^4-3x-2\)
\(-y\left(x\right)=x^4-3x+2\).
Dẽ thấy \(y\left(-x\right)\ne y\left(x\right)\)\(y\left(-x\right)\ne-y\left(x\right)\) nên y không là hàm chẵn và hàm số lẻ.
D) TXĐ: R\ {0} tự đối xứng.
\(y\left(-x\right)=\dfrac{-\left(-x\right)^4+\left(-x\right)^2+1}{-x}=-\dfrac{-x^4+x^2+1}{x}=-y\left(x\right)\)
Vậy y là hàm số lẻ.

17 tháng 5 2017

Hàm số bậc nhất y=ax+b

Hàm số bậc nhất y=ax+b

28 tháng 4 2017

a) TXĐ: \(D=R\).
b) \(TXD=D=R\backslash\left\{4\right\}\)
c) Đkxđ: \(\left\{{}\begin{matrix}4x+1\ge0\\-2x+1\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{-1}{4}\\x\le\dfrac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\dfrac{-1}{4}\le x\le\dfrac{1}{2}\).
TXĐ: D = \(\left[\dfrac{-1}{4};\dfrac{1}{2}\right]\)

3 tháng 5 2017

a) Đkxđ: \(\left\{{}\begin{matrix}x+9\ge0\\x^2+8x-20\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-9\\\left\{{}\begin{matrix}x\ne2\\x\ne-10\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-9\\x\ne2\end{matrix}\right.\)
Txđ: D = [ - 9; 2) \(\cup\) \(\left(2;+\infty\right)\)
b) Đkxđ: \(\left\{{}\begin{matrix}2x+1\ne0\\x-3\ne0\end{matrix}\right.\Leftrightarrow\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{-1}{2}\\x\ne3\end{matrix}\right.\)
Txđ: \(D=R\backslash\left\{\dfrac{-1}{2};3\right\}\)
c) \(x^2+2x-5\ne0\Leftrightarrow\left\{{}\begin{matrix}x\ne-1+\sqrt{6}\\x\ne-1-\sqrt{6}\end{matrix}\right.\)
Txđ: \(D=R\backslash\left\{-1+\sqrt{6};-1-\sqrt{6}\right\}\)


2 tháng 4 2017

a) Tập xác định của y = f(x) = |x| là D = R.

∀x ∈ R => -x ∈ R

f(- x) = |- x| = |x| = f(x)

Vậy hàm số y = |x| là hàm số chẵn.

b) Tập xác định của

y = f(x) = (x + 2)2 là R.

x ∈ R => -x ∈ R

f(- x) = (- x + 2)2 = x2 – 4x + 4 ≠ f(x)

f(- x) ≠ - f(x) = - x2 – 4x - 4

Vậy hàm số y = (x + 2)2 không chẵn, không lẻ.

c) D = R, x ∈ D => -x ∈ D

f(– x) = (– x3) + (– x) = - (x3 + x) = – f(x)

Vậy hàm số đã cho là hàm số lẻ.

d) Hàm số không chẵn cũng không lẻ.


9 tháng 8 2018

a) ta có : \(D=R\backslash\left\{0\right\}\) \(\Rightarrow x\in D\) thì \(-x\in D\)

ta có : \(f\left(-x\right)=\dfrac{\left(-x\right)^4+3}{\left|-x\right|+4\left(-x\right)^2}=\dfrac{x^4+3}{\left|x\right|+4x^2}=f\left(x\right)\)

\(\Rightarrow\) hàm số này là hàm chẳn.

b) ta có : \(D=R\backslash\left\{\pm1\right\}\) \(\Rightarrow x\in D\) thì \(-x\in D\)

ta có : \(f\left(-x\right)=\dfrac{3\left(-x\right)^4-\left(-x\right)^2+5}{\left|-x\right|^5-1}=\dfrac{3x^4-x^2+5}{\left|x\right|^5-1}=f\left(x\right)\)

\(\Rightarrow\) hàm số này là hàm chẳn .

c) ta có : \(D=\left(-\infty;-3\right)\cup\left(3;+\infty\right)\) \(\Rightarrow x\in D\) thì \(-x\in D\)

ta có : \(f\left(-x\right)=\dfrac{1}{\sqrt{\left(-x\right)^2-9}}=\dfrac{1}{\sqrt{x^2-9}}=f\left(x\right)\)

\(\Rightarrow\) hàm số này là hàm chẳn.

d) ta có : \(D=R\) \(\Rightarrow x\in D\) thì \(-x\in D\)

ta có : \(f\left(-x\right)=\dfrac{-x}{\left|-5x+2\right|+\left|-5x-2\right|}=\dfrac{-x}{\left|5x-2\right|+\left|5x+2\right|}=-f\left(x\right)\)

\(\Rightarrow\) hàm số này là hàm lẽ .

23 tháng 7 2019

1. \(y=f\left(x\right)=x^2+2\left|x\right|-1\)

TXĐ: D=R

a) Xét tính chẵn lẻ

Với mọi x thuộc D => -x thuộc D

Xét : \(f\left(-x\right)=\left(-x\right)^2+2\left|-x\right|-1=x^2+2\left|x\right|-1=f\left(x\right)\)

=> y= f(x) là hàm chẵn

b)  Xét tính đồng biến, nghịch biến

Với mọi  \(x_1>x_2\)

\(f\left(x_1\right)-f\left(x_2\right)=\left(x_1^2+2\left|x_1\right|-1\right)-\left(x_2^2+2\left|x_2\right|-1\right)\)

\(=\left(x_1^2-x_2^2\right)+2\left(\left|x_1\right|-\left|x_2\right|\right)\)

+) \(x_1;x_2\in\left(0;+\infty\right)\)

\(f\left(x_1\right)-f\left(x_2\right)=\left(x_1^2-x_2^2\right)+2\left(x_1-x_2\right)=\left(x_1-x_2\right)\left(x_1+x_2+2\right)>0\)

=> \(f\left(x_1\right)>f\left(x_2\right)\)

=> Hàm số đồng biến  trên \(\left(0;+\infty\right)\)

+) \(x_1;x_2\in\left(-\infty;0\right)\)

\(f\left(x_1\right)-f\left(x_2\right)=\left(x_1^2-x_2^2\right)+2\left(-x_1+x_2\right)=\left(x_1-x_2\right)\left(x_1+x_2-2\right)< 0\)

=> \(f\left(x_1\right)< f\left(x_2\right)\)

> Hàm số nghịch biến trên \(\left(-\infty;0\right)\)

2.

 \(y=f\left(x\right)=x+\frac{1}{x}\)

TXD: D=R\{0}

a) Xét tính chẵn lẻ.

Với mọi x thuộc D => -x thuộc D

Có \(f\left(-x\right)=-x+\frac{1}{-x}=-\left(x+\frac{1}{x}\right)=-f\left(x\right)\)

=> y= f(x) là hàm lẻ

Em tự làm tiếp nhé. Tương tự như trên

13 tháng 4 2017

a) Bảng biến thiên:

Đồ thị: - Đỉnh:

- Trục đối xứng:

- Giao điểm với trục tung A(0; 1)

- Giao điểm với trục hoành , C(1; 0).

(hình dưới).

b) y = - 3x2 + 2x – 1=

Bảng biến thiên:

Vẽ đồ thị: - Đỉnh Trục đối xứng: .

- Giao điểm với trục tung A(0;- 1).

- Giao điểm với trục hoành: không có.

Ta xác định thêm mấy điểm: B(1;- 2), C(1;- 6). (bạn tự vẽ).

c) y = 4x2 - 4x + 1 = .

Lập bảng biến thiên và vẽ tương tự câu a, b.

d) y = - x2 + 4x – 4 = - (x – 2)2

Bảng biến thiên:

Cách vẽ đồ thị:

Ngoài cách vẽ như câu a, b, ta có thể vẽ như sau:

+ Vẽ đồ thị (P) của hàm số y = - x2.

+ Tịnh tiến (P) song song với Ox sang phải 2 đơn vị được (P1) là đồ thị cần vẽ. (hình dưới).

e) y = 2x2+ x + 1;

- Đỉnh I \(\left(\dfrac{-1}{4};\dfrac{-7}{8}\right)\)

- Trục đối xứng :\(x=\dfrac{-1}{4}\)

- Giao Ox: Đồ thị không giao với trục hoành

- Giao Oy: Giao với trục tung tại điểm (0;1)

Bảng biến thiên:

Vẽ đồ thị theo bảng sau:

x -2 -1 0 1 2
y 7 2 1 4 11

f) y = - x2 + x - 1.

- Đỉnh I \(\left(\dfrac{1}{2};\dfrac{-3}{4}\right)\)

- Trục đối xứng : \(x=\dfrac{1}{2}\)

- Giao Ox: Đồ thị không giao với trục hoành

- Giao Oy: Giao với trục tung tại điểm (0;-1)

Bảng biến thiên:

Vẽ đồ thị theo bảng sau:

x -2 -1 0 1 2
y -7 -3 -1 -1 -3



28 tháng 9 2016

a)TXĐ D=[-2:2]  

\(\forall x\in D\Rightarrow-x\in D\)

f(-x)=\(\sqrt{2-\left(-x\right)}\) +\(\sqrt{2-x}\) =\(\sqrt{2+x}+\sqrt{2-x}=f\left(x\right)\)

Hàm số đồng biến

Câu b) c) giống rồi tự xử nha

d)\(Đk:x^2-4x+4\ge0\Leftrightarrow\left(x-2\right)^2\ge0\)

TXĐ D=R

\(\forall x\in D\Rightarrow-x\in D\)

\(f\left(-x\right)=\sqrt[]{\left(-x\right)^2+4x+4}+\left|2-x\right|=\sqrt{x^2+4x+4}+\left|2-x\right|\ne\mp f\left(x\right)\)

Hàm số không chẵn không lẻ

 

 
30 tháng 3 2017

a) Bảng biến thiên

Đồ thị hàm số

Đồ thị là đường thẳng đi qua 2 điểm:

+ Giao với trục tung P(0,-1)

+ Giao với trục hoành Q(2, 0)

b) Bảng biến thiên

Đồ thị hàm số

Đồ thị là đường thẳng đi qua 2 điểm:

+ Giao với trục tung P(0,4)

+ Giao với trục hoành Q(2, 0)

c) y=√x2y=x2 = |x| ={−x,x≤0x,x>0{−x,x≤0x,x>0

Bảng biến thiên

Đồ thị hàm số

d) y = |x+1| = {−x−1,x≤−1x+1,x>−1{−x−1,x≤−1x+1,x>−1

Bảng biến thiên

Đồ thị hàm số

22 tháng 12 2018

vui giúp mình với nha mọi người

28 tháng 12 2018

Bài 1 : Đồ thị đi qua điểm M(4;-3) \(\Rightarrow\) y=-3 x=4. Ta được:

\(-3=4a+b\)

Đồ thị song song với đường d \(\Rightarrow\) \(a=a'=-\dfrac{2}{3}\) Ta được:

\(-3=4.-\dfrac{2}{3}+b\) \(\Rightarrow\) \(b=-\dfrac{1}{3}\)

Vậy: \(a=-\dfrac{2}{3};b=-\dfrac{1}{3}\)

b) (P) đi qua 3 điểm A B O, thay tất cả vào (P), ta được hpt:

\(\hept{\begin{cases}a+b+c=1\\a-b-c=-3\\0+0+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=-1\\b=2\\c=0\end{cases}}}\)

Bài 2 : Mình ko biết vẽ trên này, bạn theo hướng dẫn rồi tự làm nhé

Đồ thị có \(a< 0\) \(\Rightarrow\) Hàm số nghịch biến trên R

\(\Rightarrow\) Đồ thị có đỉnh \(I\left(1;4\right)\)

Chọn các điểm:

x 1 3 -1 2 -2

y 4 0 0 3 -5