K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2020

Bạn ơi xem và trả lời hộ bài của mình đi , mình cảm ơn !!!

4 tháng 3 2020

\(x^2-\left(m+3\right)x+3m=0\)

\(\Delta=\left(m+3\right)^2-4.1.3m=m^2+6m+9-12m\)

\(=m^2-9m+9=\left(m-3\right)^2\)

Để pt có 2 nghiệm phân biệt thì \(\left(m-3\right)^2>0\)

\(\Rightarrow m\ne3\)

Các bạn ơi ! Giúp mik với.....B1: Xác định m để phương trình sau có hai nghiệm , nghiệm này bằng hai lần nghiệm kia: \(^{x^2-2\left(m-2\right)x-4m=0}\)B2: Tìm m để phương trình sau có nghiệm âm: \(\frac{1-x}{m-1}-\frac{x+1}{1+m}=\frac{2x+5}{1-m^2}\left(m\ne\pm1\right)\)B3: Giải và biện luận phương trình: \(\frac{ax-1}{4}-\frac{2\left(x-a\right)}{3}=\frac{a+4}{6}\)B4: Cho a,b,c là ba cạnh của một tam giác chứng minh rằng : \(1<...
Đọc tiếp

Các bạn ơi ! Giúp mik với.....

B1: Xác định m để phương trình sau có hai nghiệm , nghiệm này bằng hai lần nghiệm kia: \(^{x^2-2\left(m-2\right)x-4m=0}\)

B2: Tìm m để phương trình sau có nghiệm âm: \(\frac{1-x}{m-1}-\frac{x+1}{1+m}=\frac{2x+5}{1-m^2}\left(m\ne\pm1\right)\)

B3: Giải và biện luận phương trình: \(\frac{ax-1}{4}-\frac{2\left(x-a\right)}{3}=\frac{a+4}{6}\)

B4: Cho a,b,c là ba cạnh của một tam giác chứng minh rằng : \(1< \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< 2\)
B5: Cho phương trình : \(\left(m^2-4\right)x+2=m\left(1\right)\)

       Với điều kiện nào của m thì phương trình (1) là một phương trình bậc nhất . Tìm nghiệm của phương trình trên với tham số là m.

 

Ai làm đúng thì mình tích cho nhé !!! Mik cân gấp các bạn nào có cách giải nào thì trả lời nhé !!!! Nghỉ Tết mà nhiều bài quá :)) :v 

0
19 tháng 2 2022

\(mx-x-m+2=0\)

\(x\left(m-1\right)=m-2\)

Nếu m=1 ⇒ \(0x=-1\) (vô nghiệm)

Nếu m≠1 ⇒ \(x=\dfrac{m-2}{m-1}\)

Vậy ...

10 tháng 10 2021

`2/(x+1)-m/(x-2)=0(x\ne-1,x\ne2)`

`<=>2/(x+1)=m/(x-2)`

`<=>2(x-2)=m(x+1)`

`<=>2x-4=mx+m`

`<=>mx-2x=-m-4`

`<=>x(m-2)=-4-m`

Để pt có nghiệm

`=>m-2ne0=>m ne 2`

`=>x=(-4-m)/(m-2)`

`x ne -1=>(-4-m)/(m-2)\ne-1`

`=>(-m-4)/(m-2)+1\ne0`

`<=>-2/(m-2) ne 0` luôn đúng với m khác 2

`x ne 2=>(-4-m)/(m-2)\ne2`

`=>(-m-4)/(m-2)-2 \ne 0`

`=>(-3m-8)/(m-2)\ne0`

`=>-3m-8\ne0`

`=>m\ne-8/3`

Vậy với `m ne 2` và `m ne -8/3` thì pt có nghiệm

10 tháng 10 2021

Đk: \(\left\{{}\begin{matrix}x+1\ne0\\x-2\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ne-1\\x\ne2\end{matrix}\right.\)

Pt: \(\Rightarrow2\left(x-2\right)-m\left(x+1\right)=0\)

     \(\Rightarrow2x-4-mx-m=0\) \(\Rightarrow x\left(2-m\right)=m+4\)

     \(\Rightarrow x=\dfrac{m+4}{2-m}\)

Mà \(x\ne-1vàx\ne2\) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{m+4}{2-m}\ne-1\\\dfrac{m+4}{2-m}\ne2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}4\ne-2\left(luônđúng\right)\\m\ne0\end{matrix}\right.\)

Vậy với \(m\ne0\) thì pt có nghiệm.

2 tháng 2 2020

a) Thay \(x=-2\)vào phương trình ta có: 

\(\left(-2\right)^3-\left(m^2-m+7\right).\left(-2\right)-3\left(m^2-m-2\right)=0\)

\(\Leftrightarrow-8+2\left(m^2-m+7\right)-3\left(m^2-m-2\right)=0\)

\(\Leftrightarrow-8+2m^2-2m+14-3m^2+3m+6=0\)

\(\Leftrightarrow-m^2+m+12=0\)\(\Leftrightarrow-\left(m^2-m-12\right)=0\)

\(\Leftrightarrow m^2-m-12=0\)\(\Leftrightarrow\left(m-4\right)\left(m+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}m-4=0\\m+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}m=4\\m=-3\end{cases}}\)

Vậy \(m=-3\)hoặc \(m=4\)

2 tháng 2 2020

b) TH1: Với \(m=-3\)ta có phương trình: 

\(x^3-\left[\left(-3\right)^2-\left(-3\right)+7\right].x-3\left[\left(-3\right)^2-\left(-3\right)-2\right]=0\)

\(\Leftrightarrow x^3-\left(9+3+7\right)x-3\left(9+3-2\right)=0\)

\(\Leftrightarrow x^3-19x-3.10=0\)\(\Leftrightarrow x^3-19x-30=0\)

\(\Leftrightarrow\left(x^3+2x^2\right)-\left(2x^2+4x\right)-\left(15x+30\right)=0\)

\(\Leftrightarrow x^2\left(x+2\right)-2x\left(x+2\right)-15\left(x+2\right)=0\)

\(\Leftrightarrow\left(x^2-2x-15\right)\left(x+2\right)=0\)\(\Leftrightarrow\left(x-5\right)\left(x+3\right)\left(x+2\right)=0\)

\(\Leftrightarrow\)\(x-5=0\)hoặc \(x+3=0\)hoặc \(x+2=0\)

\(\Leftrightarrow x=5\)hoặc \(x=-3\)hoặc \(x=-2\)

TH2: Với \(m=4\)ta có phương trình: \(x^3-19x-30=0\)

Tương tự như trên.

Vậy các nghiệm còn lại của phương trình là \(x=-3\)và \(x=5\)