\(\frac{1}{x\left(x^2+1\right)}=\frac{a}{x}+\frac{bx+c}{x^...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2017

Phương trình đã cho tương đương:

\(\frac{1}{x\left(x^2+1\right)}=\frac{a\left(x^2+1\right)+bx^2+c}{\text{x}\left(x^2+1\right)}\)

<=> ax^2 + a + bx^2 +cx= 1

Nếu k cho điều kiện của a,b,c thì chỉ làm dc đến đó thôi, có lẽ pahri cần a,b,c nguyên chăng?

21 tháng 12 2018

\(\frac{1}{x\left(x^2+1\right)}=\frac{a}{x}+\frac{bx+c}{x^2+1}\)

\(\frac{1}{x+\left(x^2+1\right)}=\frac{\text{ã}^2+a+bx^2+cx}{x\left(x^2+1\right)}\)

\(\frac{1}{x\left(x^2+1\right)}=\frac{x^2\left(a+b\right)+cx+a}{x\left(x^2+1\right)}\)

Đồng nhất với phân thức \(\frac{1}{x\left(x^2+1\right)}\)ta được:

\(a+b=0\)\(c=0\)\(a=1\)

\(\Rightarrow b=-1\)

Vậy:\(\frac{1}{x\left(x^2+1\right)}=\frac{1}{x}-\frac{x}{x^2+1}\)

tích hộ nha.Học tốt 

21 tháng 8 2017

(14,78-a)/(2,87+a)=4/1

14,78+2,87=17,65

Tổng số phần bằng nhau là 4+1=5

Mỗi phần có giá trị bằng 17,65/5=3,53

=>2,87+a=3,53

=>a=0,66.

21 tháng 8 2017

\(\frac{a}{x}+\frac{b}{x+1}+\frac{c}{x+2}=\frac{a\left(x+1\right)\left(x+2\right)+bx\left(x+2\right)+c\left(x+1\right)x}{x\left(x+1\right)\left(x+2\right)}\)

\(=\frac{a\left(x^2+3x+2\right)+b\left(x^2+2x\right)+c\left(x^2+x\right)}{x\left(x+1\right)\left(x+2\right)}=\frac{ax^2+3ax+2a+bx^2+2bx+cx^2+cx}{x\left(x+1\right)\left(x+2\right)}\)

\(=\frac{x^2\left(a+b+c\right)+x\left(3a+2b+c\right)+2a}{x\left(x+1\right)\left(x+2\right)}=\frac{1}{x\left(x+1\right)\left(x+2\right)}\)

Đồng nhất phân thức ta được : \(\hept{\begin{cases}a+b+c=0\\3a+2b+c=0\\2a=1\end{cases}\Rightarrow\hept{\begin{cases}a=\frac{1}{2}\\b=-1\\c=\frac{1}{2}\end{cases}}}\)

Vậy \(a=\frac{1}{2};b=-1;c=\frac{1}{2}\)

11 tháng 8 2016

Xét vế phải : \(\frac{a}{x+1}+\frac{b}{x-2}+\frac{c}{\left(x-2\right)^2}=\frac{a\left(x-2\right)^2}{\left(x+1\right)\left(x-2\right)^2}+\frac{b\left(x-2\right)\left(x+1\right)}{\left(x+1\right)\left(x-2\right)^2}+\frac{c\left(x+1\right)}{\left(x+1\right)\left(x-2\right)^2}\)

\(=\frac{a\left(x^2-4x+4\right)+b\left(x^2-x-2\right)+c\left(x+1\right)}{\left(x+1\right)\left(x-2\right)^2}\)

\(=\frac{x^2\left(a+b\right)+x\left(-4a-b+c\right)+\left(4a-2b+c\right)}{\left(x+1\right)\left(x-2\right)^2}\)

So sánh với vế trái, suy ra : 

\(\begin{cases}a+b=2\\-4a-b+c=-1\\4a-2b+c=1\end{cases}\). Giải ra được \(\left(a,b,c\right)=\left(\frac{4}{9};\frac{14}{9};\frac{7}{3}\right)\)

4 tháng 12 2018

a,\(\frac{1}{x\left(x^2+1\right)}=\frac{a}{x}+\frac{bx+c}{x^2+1}\Rightarrow\frac{1}{x\left(x^2+1\right)}=\frac{\left(a+b\right)x^2+cx+a}{x\left(x^2+1\right)}\)

Dong nhat 2 phan thuc tren ta duoc:

\(\hept{\begin{cases}a+b=0\\c=0\\a=1\end{cases}\Leftrightarrow\hept{\begin{cases}b=-1\\c=0\\a=1\end{cases}}}\)

b, \(\frac{1}{x^2-4}=\frac{a}{x-2}+\frac{b}{x+2}\Rightarrow\frac{1}{x^2-4}=\frac{\left(a+b\right)x+2\left(a-b\right)}{x^2-4}\)

Dong nhat 2 phan thuc tren ta duoc:

\(\hept{\begin{cases}\left(a+b\right)x=0\\2\left(a-b\right)=1\end{cases}\Leftrightarrow\hept{\begin{cases}a+b=0\\a-b=\frac{1}{2}\end{cases}\Leftrightarrow}\hept{\begin{cases}a=\frac{1}{4}\\b=\frac{-1}{4}\end{cases}}}\)

3 tháng 1 2017

\(\Leftrightarrow\left(ax+b\right)\left(x-1\right)+c\left(x^2+1\right)=1\)

(a+c)x^2-(a-b)x+(c-b)=1

\(\hept{\begin{cases}a+c=0\\a-b=0\\c-b=1\end{cases}\Leftrightarrow\hept{\begin{cases}c+b=0\\c-b=1\end{cases}\Rightarrow}\hept{\begin{cases}c=\frac{1}{2}\\b=-\frac{1}{2}\\a=-\frac{1}{2}\end{cases}}}\)

24 tháng 11 2018

2, \(\frac{x^2}{2}+\frac{y^2}{3}+\frac{z^2}{4}=\frac{x^2+y^2+z^2}{5}\)

<=>\(\left(\frac{x^2}{2}-\frac{x^2}{5}\right)+\left(\frac{y^2}{3}-\frac{y^2}{5}\right)+\left(\frac{z^2}{4}-\frac{z^2}{5}\right)=0\)

<=>\(\frac{3}{10}x^2+\frac{2}{15}y^2+\frac{1}{20}z^2=0\)

<=>x=y=z=0

24 tháng 11 2018

4,

a, \(\frac{1}{x\left(x^2+1\right)}=\frac{a}{x}+\frac{bx+c}{x^2+1}\)

=>\(\frac{1}{x\left(x^2+1\right)}=\frac{ax^2+a+bx^2+cx}{x\left(x^2+1\right)}=\frac{\left(a+b\right)x^2+cx+a}{x\left(x^2+1\right)}\)

Đồng nhất 2 phân thức ta được:

\(\hept{\begin{cases}a+b=0\\c=0\\a=1\end{cases}\Leftrightarrow\hept{\begin{cases}b=-1\\c=0\\a=1\end{cases}}}\)

b,a=1/4,b=-1/4

c, a=-1,b=1,c=1