Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3+x^2+a-x=\left(x^3+x^2\right)-\left(x+1\right)+\left(a+1\right)=x^2\left(x+1\right)-\left(x+1\right)+\left(a+1\right)\)
\(=\left(x^2-1\right)\left(x+1\right)+\left(a+1\right)\)
Vì \(\left(x^2-1\right)\left(x+1\right)⋮\left(x+1\right)\)\(\Rightarrow\)Để \(x^3+x^2+a-x\)chia hết cho \(x+1\)thì \(a+1=0\)
\(\Rightarrow a=-1\)
Vậy \(a=-1\)
Có 2 cách giải
Cách 1: Ta có (x+ 1)2= x2+ 2x+ 1
Đặt phép chia x3+ x2- x+ a cho (x+ 1)2
( Tự đặt phép chia vì t ko bt đặt phép chia trên máy =]]~ )
được thương là x- 1 và số dư là a+ 1.
Để phép chia hết thì số dư phải= 0
<=> a+ 1= 0 <=> a= -1
Cách 2: Đặt P(x)= x3+ x2- x+ a
Ta có P(x) chia hết cho (x+ 1)2 <=> P(x)= (x+ 1)2 * R(x) (1)
với R(x) là đa thức
Thay -1 vào 2 vế của (1). Ta có:
(-1)3+ (-1)2- (-1)+ a= (-1+ 1)2* R(-1)
=> -1+ 1+ 1+ a= 0
=> 1+ a=0 => a= -1
Bài làm
Đặt phép chia đa thức với đa thức ta được:
( x³ + x² - x + a ) : ( x + 1 )² = x - 1 ( dư a + 1 )
Để x³ + x² - x + a chia hết cho ( x + 1 )²
<=> a + 1 = 0
<=> a = -1
Vậy a = -1 thì x³ + x² - x + a chia hết cho ( x + 1 )²
~ mik dùng đt nên không thể vẽ cột chia được. Bạn làm vào vở tự vẽ cột rồi chia ra như cấp 1 nh ~