Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
\(\left(5x+1\right)^2-\left(2xy-3\right)^2\)
\(=25x^2+10x+1-\left(2xy-3\right)^2\)
\(=25x^2+10x+1\left(4x^2y^2-12xy+9\right)\)
\(=25x^2+10x+1-4x^2y^2+12xy-9\)
\(=25x^2-4x^2y^2+10x+12xy-8\)
Bài 2:
\(\left(x-1\right)\left(x^2+x+1\right)=x^2\left(x-9\right)+2x+6\)
\(=x^3-1=x^3-9x^2+2x+6\)
\(=x^3-9x^2+2x+6=x^3-1\)
\(=x^3-9x^2+2x+6+1=x^3-1+1\)
\(=x^3-9x^2+2x+7=x^3\)
\(=x^3-9x^2+2x+7-x^3=x^3-x^3\)
\(=-9x^2+2x+7=0\)
\(\Rightarrow x=-\frac{7}{9};x=1\)
<>?/[;b[]rwel;u];53pjkjnlgkljtreylkeuro;uwqr[i5uiwehhwwejokejoiyufljukneghnmknbfvhdbg.elkgiwr;iewqirluoyeiwhtgo
8) \(\left(x+4\right)\left(6x-12\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+4=0\\6x-12=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-4\\6x=12\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-4\\x=2\end{cases}}}\)
Vậy \(x\in\left\{-4;2\right\}\)
11) \(\left(\frac{7}{8}-2x\right)\left(3x+\frac{1}{3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{7}{8}-2x=0\\3x+\frac{1}{3}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=\frac{7}{8}-0\\3x=-\frac{1}{3}\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=\frac{7}{8}\\x=-\frac{1}{9}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{7}{16}\\x=-\frac{1}{9}\end{cases}}}\)
Vậy \(x\in\left\{\frac{7}{16};-\frac{1}{9}\right\}\)
12) \(3x-2x^2=0\)
\(\Leftrightarrow x\left(3-2x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}\)
Vậy \(x\in\left\{0;\frac{3}{2}\right\}\)
13) \(5x+10x^2=0\)
\(\Leftrightarrow5x\left(1+2x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{1}{2}\end{cases}}\)
Vậy \(x\in\left\{0;-\frac{1}{2}\right\}\)
a) 4( 18 - 5x ) - 12( 3x - 16 ) = 15( 2x - 16 ) - 6( x + 14 )
<=> 72 - 20x - 36x + 192 = 30x - 240 - 6x - 84
<=> -20x - 36x - 30x + 6x = -240 - 84 - 72 - 192
<=> -80x = -588
<=> x = -588/-80 = 147/20
b) ( x + 3 )( x + 2 ) - ( x - 2 )( x + 5 ) = 6
<=> x2 + 5x + 6 - ( x2 + 3x - 10 ) = 6
<=> x2 + 5x + 6 - x2 - 3x + 10 = 6
<=> 2x + 16 = 6
<=> 2x = -10
<=> x = -5
c) -x( x + 3 ) + 2 = ( 4x + 1 )( x - 1 ) + 2x
<=> -x2 - 3x + 2 = 4x2 - 3x - 1 + 2x
<=> -x2 - 3x - 4x2 + 3x - 2x = -1 - 2
<=> -5x2 - 2x = -3
<=> -5x2 - 2x + 3 = 0
<=> -( 5x2 + 2x - 3 ) = 0
<=> -( 5x2 + 5x - 3x - 3 ) = 0
<=> -[ 5x( x + 1 ) - 3( x + 1 ) ] = 0
<=> -( x + 1 )( 5x - 3 ) = 0
<=> \(\orbr{\begin{cases}x+1=0\\5x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{3}{5}\end{cases}}\)
d) ( 2x + 3 )( x - 3 ) - ( x - 3 )( x + 1 ) = ( 2 - x )( 3x + 1 ) + 3
<=> 2x2 - 3x - 9 - ( x2 - 2x - 3 ) = -3x2 + 5x + 2 + 3
<=> 2x2 - 3x - 9 - x2 + 2x + 3 = -3x2 + 5x + 2 + 3
<=> 2x2 - 3x - x2 + 2x + 3x2 - 5x = 2 + 3 + 9 - 3
<=> 4x2 - 6x = 11
<=> 4x2 - 6x - 11 = 0
=> Vô nghiệm ( Lớp 8 chưa học nghiệm vô tỉ nên để vậy ) :))
vẫn làm được nha quỳnh !
\(4x^2-6x-11=0\)
\(< =>\left(4x^2-6x+\frac{9}{4}\right)-13\frac{1}{4}=0\)
\(< =>\left(2x-\frac{3}{2}\right)^2=\frac{53}{4}\)
\(< =>\orbr{\begin{cases}2x-\frac{3}{2}=\frac{\sqrt{53}}{2}\\2x-\frac{3}{2}=-\frac{\sqrt{53}}{2}\end{cases}}\)
\(< =>\orbr{\begin{cases}2x=\frac{3+\sqrt{53}}{2}\\2x=\frac{3-\sqrt{53}}{2}\end{cases}}\)
\(< =>\orbr{\begin{cases}x=\frac{3+\sqrt{53}}{4}\\x=\frac{3-\sqrt{53}}{4}\end{cases}}\)
Giải tiêu biểu câu a nhé.
a/ \(5x\left(2x-7\right)+2x\left(8-5x\right)=5\)
\(\Leftrightarrow19x+5=0\)
\(\Leftrightarrow x=-\frac{5}{19}\)
1.
\(\frac{25x^4y^3-15x^3y^5+20x^2y^4}{5x^2y^3}\)
\(=\frac{5x^2y^3\left(5x^2-3xy^2+4y\right)}{5x^2y^3}\)
\(=5x^2-3xy^2+4y\)
2.
a) \(27x^4-8x=x\left(27x^3-8\right)\)
\(=x\left(3x-2\right)\left(9x^2+6x+4\right)\)
b) \(16x^2y-4xy^2-4x^3+x^2y\)
\(=4xy\left(4x-y\right)-x^2\left(4x-y\right)\)
\(=x\left(4x-y\right)\left(4y-x\right)\)
c) \(x^2-2x-5+2\sqrt{5}\)
\(=\left(x-1\right)^2-6+2\sqrt{5}\)
\(=\left(x-1\right)^2-\left(6-2\sqrt{5}\right)=\left(x-1\right)^2-\left(\sqrt{5}-1\right)^2\)
\(=\left(x-\sqrt{5}\right)\left(x-2+\sqrt{5}\right)\)
Bài 1:
\(\left(25x^4y^3-15x^3y^5+20x^2y^4\right):\left(5x^2y^3\right)\)
\(=\frac{25x^4y^3-15x^3y^5+20x^2y^4}{5x^2y^3}\)
\(=\frac{5x^2y^3\left(5x^2-3xy^2+4y\right)}{5x^2y^3}\)
\(=5x^2-3xy^2+4y\)
Bài 2:
a) \(27x^4-8x\)
\(=x\left(3x-2\right)\left(3^2x^2+2.3x+2^2\right)\)
\(=x\left(3x-2\right)\left(9x^2+6x+4\right)\)
b) \(16x^2y-4xy^2-4x^3+x^2y\)
\(=4y^2+x^2-\left(4x^2\right)^2\)
\(=x\left(-4x^2+xy+4y^2\right)\)
\(\frac{x+5}{4}-\frac{2x-3}{3}=\frac{6x-1}{8}+\frac{2x-1}{12}\)
\(\Leftrightarrow\frac{6\left(x+5\right)}{24}-\frac{8\left(2x-3\right)}{24}=\frac{3\left(6x-1\right)}{24}+\frac{2\left(2x-1\right)}{24}\)
\(\Leftrightarrow6x+30-16x+24=18x-3+4x-2\)
\(\Leftrightarrow6x-16x-18x-4x=-2-3-24-30\)
\(\Leftrightarrow-32x=-59\)
\(\Leftrightarrow x=\frac{59}{32}\)