K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2020

\(\frac{x+5}{2015}+\frac{x+4}{2016}+\frac{x+3}{2017}=\frac{x+2015}{5}+\frac{x+2016}{4}+\frac{x+2017}{3}\)

\(\Leftrightarrow\frac{x+5}{2015}+\frac{x+4}{2016}+\frac{x+3}{2017}-\frac{x+2015}{5}-\frac{x+2016}{4}-\frac{x+2017}{3}=0\)

\(\Leftrightarrow\left(\frac{x+5}{2015}+1\right)+\left(\frac{x+4}{2016}+1\right)+\left(\frac{x+3}{2017}+1\right)-\left(\frac{x+2015}{5}+1\right)-\left(\frac{x+2016}{4}+1\right)\)

\(-\left(\frac{x+2017}{3}+1\right)=0\)

\(\Leftrightarrow\frac{x+2020}{2015}+\frac{x+2020}{2016}+\frac{x+2020}{2017}-\frac{x+2020}{5}-\frac{x+2020}{4}-\frac{x+2020}{3}=0\)

\(\Leftrightarrow\left(x+2020\right)\left(\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}-\frac{1}{5}-\frac{1}{4}-\frac{1}{3}\right)=0\)

\(\Leftrightarrow x+2020=0\left(\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}-\frac{1}{5}-\frac{1}{4}-\frac{1}{3}\ne0\right)\)

<=> x=-2020

Vậy x=-2020

10 tháng 6 2020

Giải phương trình: (3x-2)(x-1)^2(3x+8)=-16

16 tháng 7 2017

\(x=2014\)

16 tháng 7 2017

Ta có:

\(\dfrac{x}{2014}+\dfrac{x+1}{2015}+\dfrac{x+2}{2016}+\dfrac{x+3}{2017}+\dfrac{x+4}{2018}=5\)

\(\Leftrightarrow\left(\dfrac{x}{2014}-1\right)+\left(\dfrac{x+1}{2015}-1\right)+\left(\dfrac{x+2}{2016}-1\right)+\left(\dfrac{x+3}{2017}-1\right)+\left(\dfrac{x+4}{2018}-1\right)=0\)\(\Leftrightarrow\dfrac{x-2014}{2014}+\dfrac{x-2014}{2015}+\dfrac{x-2014}{2016}+\dfrac{x-2014}{2017}+\dfrac{x-2014}{2018}=0\)\(\Leftrightarrow\left(x-2014\right)\left(\dfrac{1}{2014}+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}\right)=0\) (1)

\(\dfrac{1}{2014}+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}>0\) (2)

Từ (1) và (2) => \(x-2014=0\) \(\Leftrightarrow x=2014\)

20 tháng 4 2018

Bài 3 : 

\(\frac{x-1}{2016}+\frac{x-2}{2015}=\frac{x-3}{2014}+\frac{x-4}{2013}\)

\(\Leftrightarrow\)\(\left(\frac{x-1}{2016}-1\right)+\left(\frac{x-2}{2015}-1\right)=\left(\frac{x-3}{2014}-1\right)+\left(\frac{x-4}{2013}-1\right)\)

\(\Leftrightarrow\)\(\frac{x-1-2016}{2016}+\frac{x-2-2015}{2015}=\frac{x-3-2014}{2014}+\frac{x-4-2013}{2013}\)

\(\Leftrightarrow\)\(\frac{x-2017}{2016}+\frac{x-2017}{2015}=\frac{x-2017}{2014}+\frac{x-2017}{2013}\)

\(\Leftrightarrow\)\(\frac{x-2017}{2016}+\frac{x-2017}{2015}-\frac{x-2017}{2014}-\frac{x-2017}{2013}=0\)

\(\Leftrightarrow\)\(\left(x-2017\right)\left(\frac{1}{2016}+\frac{1}{2015}-\frac{1}{2014}-\frac{1}{2013}\right)=0\)

Vì \(\frac{1}{2016}+\frac{1}{2015}-\frac{1}{2014}-\frac{1}{2013}\ne0\)

Nên \(x-2017=0\)

\(\Rightarrow\)\(x=2017\)

Vậy \(x=2017\)

Chúc bạn học tốt ~ 

20 tháng 4 2018

Bài 1 : 

\(\left(8x-5\right)\left(x^2+2014\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}8x-5=0\\x^2+2014=0\end{cases}\Leftrightarrow\orbr{\begin{cases}8x=0+5\\x^2=0-2014\end{cases}}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}8x=5\\x^2=-2014\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{8}\\x=\sqrt{-2014}\left(loai\right)\end{cases}}}\)

Vậy \(x=\frac{5}{8}\)

Chúc bạn học tốt ~ 

8 tháng 3 2018

\(\dfrac{x+1}{2015}+\dfrac{x+2}{2016}=\dfrac{x+3}{2017}+\dfrac{x+4}{2018}\)

<=>\(\dfrac{x+1}{2015}-1+\dfrac{x+2}{2016}-1=\dfrac{x+3}{2017}-1+\dfrac{x+4}{2018}-1\)

<=>\(\dfrac{x-2014}{2015}+\dfrac{x-2014}{2016}=\dfrac{x-2014}{2017}+\dfrac{x-2014}{2018}\)

<=>\(\dfrac{x-2014}{2015}+\dfrac{x-2014}{2016}-\dfrac{x-2014}{2017}-\dfrac{x-2014}{2018}=0\)

<=>\(\left(x-2014\right)\left(\dfrac{1}{2015}+\dfrac{1}{2016}-\dfrac{1}{2017}-\dfrac{1}{2018}\right)=0\)

vì 1/2015+1/2016-1/2017-1/2018 khác 0

=>x-2014=0<=>x=2014

vậy.....................

chúc bạn học totts ^^

8 tháng 3 2018

\(\dfrac{x+1}{2015}+\dfrac{x+2}{2016}=\dfrac{x+3}{2017}+\dfrac{x+4}{2018}\)

\(\Leftrightarrow\dfrac{x+1}{2015}-1+\dfrac{x+2}{2016}-1=\dfrac{x+3}{x017}-1+\dfrac{x+4}{2018}-1\)

\(\Leftrightarrow\dfrac{x+1-2015}{2015}+\dfrac{x+2-2016}{2016}=\dfrac{x+3-2017}{2017}+\dfrac{x+4-2018}{2018}\)\(\Leftrightarrow\dfrac{x-2014}{2015}+\dfrac{x-2014}{2016}=\dfrac{x-2014}{2017}+\dfrac{x-2014}{2018}\)

\(\Leftrightarrow\dfrac{x-2014}{2015}+\dfrac{x-2014}{2016}-\dfrac{x-2014}{2017}-\dfrac{x-2014}{2018}=0\)

\(\Leftrightarrow\left(x-2014\right)\left(\dfrac{1}{2015}+\dfrac{1}{2016}-\dfrac{1}{2017}-\dfrac{1}{2018}\right)=0\)

Vì: \(\dfrac{1}{2015}+\dfrac{1}{2016}-\dfrac{1}{2017}-\dfrac{1}{2018}\ne0\)

\(\Rightarrow x-2014=0\)

\(\Rightarrow x=2014\)

Vậy........

30 tháng 12 2017

\(a,\dfrac{1+x}{2017}+\dfrac{2+x}{2016}+\dfrac{3+x}{2015}=-3\)

\(\Leftrightarrow\dfrac{1+x}{2017}+1+\dfrac{2+x}{2016}+1+\dfrac{3+x}{2015}+1=-3+3\)

\(\Leftrightarrow\dfrac{1+x+2017}{2017}+\dfrac{2+x+2016}{2016}+\dfrac{3+x+2015}{2015}=0\)

\(\Leftrightarrow\dfrac{x+2018}{2017}+\dfrac{x+2018}{2016}+\dfrac{x+2018}{2015}=0\)

\(\Leftrightarrow\left(x+2018\right)\left(\dfrac{1}{2017}+\dfrac{1}{2016}+\dfrac{1}{2015}\right)=0\)

\(\Leftrightarrow x+2018=0\)

\(\Leftrightarrow x=-2018\)

b,\(\dfrac{x-\dfrac{3x-4}{5}}{15}=\dfrac{5x-\dfrac{3-x}{2}}{5}-x+1\)

\(\Leftrightarrow\dfrac{\dfrac{5x-3x+4}{5}}{15}=\dfrac{\dfrac{10x-3+x}{2}}{5}-x+1\)

\(\Leftrightarrow\dfrac{\dfrac{2x+4}{5}}{15}=\dfrac{\dfrac{11x-3}{2}}{5}-\dfrac{5x-5}{5}\)

\(\Leftrightarrow\dfrac{2x+4}{75}=\dfrac{11x-3}{10}-\dfrac{10x-10}{10}\)

\(\Leftrightarrow\dfrac{2x+4}{75}=\dfrac{11x-3-10x+10}{10}\)

\(\Leftrightarrow\dfrac{2x+4}{75}=\dfrac{x+7}{10}\)

\(\Leftrightarrow10\left(2x+4\right)=75\left(x+7\right)\)

\(\Leftrightarrow20x+40=75x+525\)

\(\Leftrightarrow20x-75x=525-40\)

\(\Leftrightarrow-55x=485\)

\(\Leftrightarrow x=-\dfrac{97}{11}\)

30 tháng 12 2017

a) \(\dfrac{1+x}{2017}+\dfrac{2+x}{2016}+\dfrac{3+x}{2015}=-3\)

\(\Leftrightarrow\dfrac{1+x}{2017}+1+\dfrac{2+x}{2016}+1+\dfrac{3+x}{2015}+1=0\)

\(\Leftrightarrow\dfrac{x+2018}{2017}+\dfrac{x+2018}{2016}+\dfrac{x+2018}{2015}=0\)

\(\Leftrightarrow\left(x+2018\right)\left(\dfrac{1}{2017}+\dfrac{1}{2016}+\dfrac{1}{2015}\right)=0\)

\(\Rightarrow x+2018=0\)

\(\Leftrightarrow x=-2018\)

b) \(\dfrac{x-\dfrac{3x-4}{5}}{15}=\dfrac{5x-\dfrac{3-x}{2}}{5}-x+1\)

\(\Leftrightarrow\dfrac{\dfrac{5x-3x+4}{5}}{15}=\dfrac{\dfrac{10x-3+x}{2}}{5}-x+1\)

\(\Leftrightarrow\dfrac{2x+4}{75}=\dfrac{11x-3}{10}-x+1\)

\(\Leftrightarrow\dfrac{4x+8}{150}=\dfrac{165x-45}{150}-\dfrac{150x-150}{150}\)

\(\Leftrightarrow4x+8=165x-45-150x+150\)

\(\Leftrightarrow4x-165x+150x=-45+150-8\)

\(\Leftrightarrow-11x=97\)

\(\Leftrightarrow x=-\dfrac{97}{11}\)

\(S=\left\{-\dfrac{97}{11}\right\}\)

25 tháng 9 2018

\(x^{2015}+y^{2015}=x^{2016}+y^{2016}=x^{2017}+y^{2017}\)

\(\Rightarrow x=y=1\) hoặc \(x=y=0\)

Với \(x=y=1\)

\(S=2018\left(1^{2018}+1^{2018}\right)\)

\(S=2018.2\)

\(S=4036\)

Với \(x=y=0\)

\(S=2018\left(0^{2018}+0^{2018}\right)\)

\(S=0\)

23 tháng 6 2020

\(\frac{x-5}{2015}+\frac{x-4}{2016}=\frac{x-3}{2017}+\frac{x-2}{2018}\)

\(\Leftrightarrow\frac{x-5}{2015}-1+\frac{x-4}{2016}-1=\frac{x-3}{2017}-1+\frac{x-3}{2018}-1\)

\(\Leftrightarrow\frac{x-2020}{2015}+\frac{x-2020}{2016}=\frac{x-2020}{2017}+\frac{x-2020}{2018}\)

\(\Leftrightarrow\left(x-2020\right)\left(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\right)=0\)

\(\Leftrightarrow x-2020=0\)

\(\Leftrightarrow x=2020\)

23 tháng 6 2020

\(\frac{x-5}{2015}+\frac{x-4}{2016}=\frac{x-3}{2017}+\frac{x-2}{2018}\)

\(< =>\frac{x-5}{2015}-1+\frac{x-4}{2016}-1=\frac{x-3}{2017}-1+\frac{x-2}{2018}-1\)

\(< =>\frac{x-5-2015}{2015}+\frac{x-4-2016}{2016}=\frac{x-3-2017}{2017}+\frac{x-2-2018}{2018}\)

\(< =>\frac{x-2020}{2015}+\frac{x-2020}{2016}=\frac{x-2020}{2017}+\frac{x-2020}{2018}\)

\(< =>\frac{x-2020}{2015}+\frac{x-2020}{2016}-\frac{x-2020}{2017}-\frac{x-2020}{2018}=0\)

\(< =>\left(x-2020\right)\left(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\right)=0\)

Do \(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\ne0\)

\(< =>x-2020=0< =>x=2020\)

9 tháng 3 2019

mk ko chép lại đề nha:

\(\Rightarrow\)\(\frac{x-2}{2017}\)\(-1+\frac{x-3}{2016}\)\(-1=\frac{x-4}{2015}\)\(-1+\frac{x-5}{2014}\)\(-1\)

\(\Rightarrow\)\(\frac{x-2-2017}{2017}\)\(+\frac{x-3-2016}{2016}\)\(=\frac{x-4-2015}{2015}\)\(+\frac{x-5-2014}{2014}\)

\(\Rightarrow\)\(\frac{x-2019}{2017}\)\(+\frac{x-2019}{2016}\)\(-\frac{x-2019}{2015}\)\(-\frac{x-2019}{2014}\)\(=0\)

\(\Rightarrow\)\(\left(x-2019\right)\)\(\left(\frac{1}{2017}+\frac{1}{2016}-\frac{1}{2015}-\frac{1}{2014}\right)\)\(=0\)

\(\Rightarrow\)\(\orbr{\begin{cases}x-2019=0\\\frac{1}{2017}+\frac{1}{2016}-\frac{1}{2015}-\frac{1}{2014}=0\left(voli\right)\end{cases}}\)

\(\Rightarrow\)\(x-2019=0\)

\(\Rightarrow\)\(x=-2019\)

Chỗ mình nghi voli là vô lí nha

chúc bạn học tốt

10 tháng 3 2019

x = 2019 chứ ko phải -2019 

4 tháng 11 2016

Điều kiện x \(\ge0\)từ đó ta có

x + 2015 + x + 2016 + x + 2017 = 6x 

<=> x = 2016