K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2018

Ta có:

x2 + 7x + 10 = 0

<=> x^2 + 5x + 2x + 10 = 0

<=> x(x + 5) + 2(x + 5) = 0

<=> (x+2)(x+5) = 0

<=> x+2=0 hoặc x+5=0

<=> x= -2 hoặc x= -5

Vậy x = -2; -5.

23 tháng 10 2018

\(x^2+7x+10=0\)

\(\Leftrightarrow\left(x^2+5x\right)+\left(2x+10\right)=0\)

\(\Leftrightarrow x\left(x+5\right)+2\left(x+5\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(x+2\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x+5=0\\x+2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-5\\x=-2\end{cases}}}\)

22 tháng 10 2018

(X+2)(X+5)=0

=>x=-2 hoặc x=-5

22 tháng 10 2018

x^2+7x+10=0

x(x+7)=-10

=>x>0                 x<0

    x+7<0             x+7<0

Mà x+7>x

=>x<0      =>x<0

    x+7>0      x>-7

=>x thuộc -1;-2;-3;-4;-5;-6

11 tháng 10 2021

\(3x+4=0\Leftrightarrow x=-\dfrac{4}{3}\\ 2x\left(x-1\right)-\left(1+2x\right)=-34\\ \Leftrightarrow2x^2-2x-1-2x=-34\\ \Leftrightarrow2x^2-4x+33=0\\ \Leftrightarrow2\left(x^2-2x+1\right)+30=0\\ \Leftrightarrow2\left(x-1\right)^2+30=0\\ \Leftrightarrow x\in\varnothing\left[2\left(x-1\right)^2+30\ge30>0\right]\\ x^2+9x-10=0\\ \Leftrightarrow x^2-x+10x-10=0\\ \Leftrightarrow\left(x-1\right)\left(x+10\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-10\end{matrix}\right.\\ \left(7x-1\right)\left(2+5x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}7x-1=0\\2+5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{7}\\x=-\dfrac{2}{5}\end{matrix}\right.\)

20 tháng 7 2016

\(C=\left(x-2\right)\left(x-5\right)\left(x^2-7x-10\right)=\left(x^2-7x+10\right)\left(x^2-7x-10\right)\)

Đặt \(x^2-7x=t\),khi đó:

\(C=\left(t+10\right).\left(t-10\right)=t^2-10^2=t^2-100\)

\(t^2\ge0=>t^2-100\ge-100\) (với mọi t)

Dấu "=" xảy ra\(< =>t=0< =>x^2-7x=0< =>x\left(x-7\right)=0< =>\orbr{\begin{cases}x=0\\x=7\end{cases}}\)

Vậy minC=-100 khi x=0 hoặc x=7

10 tháng 9 2017

\(y^2\)+ 2xy-7x-12=0 <=> 4\(y^2\)+8xy-28x-48=0 <=> 4\(y^2\)-49+4x(2y-7)=-1

<=> (2y-7)(2y+7+4x)=-1

=> Ta có : 2y-7= -1 và 2y+7+4x= 1

hoặc 2y-7=1 và 2y+7+4x=-1

*) 2y-7=1và 2y+7+4x=-1 *) 2y-7=-1 và 2y+7+4x=1

=> x=-4 và y=4 =>x=-3 và y=3

Vậy x=-4 và y=4 Hoặc x=-3 và y=3

22 tháng 7 2018

         \(x^2-5x-4\left(x-5\right)=0\)

\(\Leftrightarrow\)\(x\left(x-5\right)-4\left(x-5\right)=0\)

\(\Leftrightarrow\)\(\left(x-5\right)\left(x-4\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x-5=0\\x-4=0\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=5\\x=4\end{cases}}\)

Vậy....

\(2x\left(x+6\right)=7x+42\)

\(\Leftrightarrow\)\(2x\left(x+6\right)-7x-42=0\)

\(\Leftrightarrow\)\(2x\left(x+6\right)-7\left(x+6\right)=0\)

\(\Leftrightarrow\)\(\left(x+6\right)\left(2x-7\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x+6=0\\2x-7=0\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-6\\x=\frac{7}{2}\end{cases}}\)

Vậy......

\(x^3-5x^2+x-5=0\)

\(\Leftrightarrow\)\(x^2\left(x-5\right)+\left(x-5\right)=0\)

\(\Leftrightarrow\)\(\left(x-5\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow\)\(x-5=0\)

\(\Leftrightarrow\)\(x=5\)

\(x^4-2x^3+10x^2-20x=0\)

\(\Leftrightarrow\)\(x^3\left(x-2\right)+10x\left(x-2\right)=0\)

\(\Leftrightarrow\)\(x\left(x-2\right)\left(x^2+10\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

Vậy...

a)Ta có:

\(x^2-7x+12=0\)

\(\Leftrightarrow x^2-3x-4x+12=0\)

\(\Leftrightarrow x\left(x-3\right)-4\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=3\end{matrix}\right.\)

b) Ta có:

\(x\left(x-4\right)-3\left(4-x\right)=0\)

\(\Leftrightarrow x\left(x-4\right)+3\left(x-4\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=4\end{matrix}\right.\)

 

9 tháng 2 2017

a) Đặt x^2+2x+2=t

\(\frac{4}{t-1}+\frac{3}{t+1}=\frac{3}{2}\Leftrightarrow\frac{4t+4+3t-3}{t^2-1}=\frac{7t+1}{t^2-1}=\frac{3}{2}\)

\(\Leftrightarrow14t+2=3t^2-3\Leftrightarrow3t^2-14t-5=3t\left(t-5\right)+t-5=0\)\(\Leftrightarrow\left(t-5\right)\left(3t+1\right)=0\Rightarrow\left[\begin{matrix}t=5\\t=-\frac{1}{3}\left(loai\right)\end{matrix}\right.\)

Với t=5 ta có (x+1)^2=4\(\Rightarrow\left[\begin{matrix}x+1=2\\x+1=-2\end{matrix}\right.\Rightarrow\left\{\begin{matrix}x=1\\x=-3\end{matrix}\right.\)

11 tháng 2 2017

Sao lai co 3t(t-5) ,cho do thua

16 tháng 8 2017

\(b,4x^2-x-5=0\)

\(\Leftrightarrow4x^2-5x+4x-5=0\)

\(\Leftrightarrow x\left(4x-5\right)+4x-5=0\)

\(\Leftrightarrow\left(4x-5\right)\left(x+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=-1\\x=\frac{5}{4}\end{cases}}\)

Bài 2

\(a,x^3+5x^2+3x-9\)

\(\Leftrightarrow x^3-x^2+6x^2-6x+9x-9\)

\(\Leftrightarrow x^2\left(x-1\right)+6x\left(x-1\right)+9\left(x-1\right)\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+6x+9\right)\)

\(\Leftrightarrow\left(x-1\right)\left(x+3\right)^2\)

b,\(x^3-7x-6\)

\(\Leftrightarrow x^3-3x^2+3x^2-9x+2x-6\)

\(\Leftrightarrow x^2\left(x-3\right)+3x\left(x-3\right)+2\left(x-3\right)\)

\(\Leftrightarrow\left(x-3\right)\left(x^2+3x+2\right)\)

\(\Leftrightarrow\left(x-3\right)\left(x+1\right)\left(x+2\right)\)

c,\(3x^3-7x^2+17x-5\)

\(\Leftrightarrow3x^3-x^2-6x^2+2x+15x-5\)

\(\Leftrightarrow x^2\left(3x-1\right)-2x\left(3x-1\right)+5\left(3x-1\right)\)

\(\Leftrightarrow\left(3x-1\right)\left(x^2-2x+5\right)\)

20 tháng 10 2018

\(4x^2-x-5=0\)

<=>  \(4x^2+4x-5x-5=0\)

<=>   \(4x\left(x+1\right)-5\left(x+1\right)=0\)

<=>  \(\left(x+1\right)\left(4x-5\right)=0\)

tự lm tiếp

16 tháng 8 2017

Bài 1:

a)\(28x^3+15x^2+75x+125=0\)

\(\Leftrightarrow\left(4x+5\right)\left(7x^2-5x+25\right)=0\)

Dễ thấy: \(7x^2-5x+25=7\left(x-\frac{5}{14}\right)^2+\frac{675}{28}>0\)

\(\Rightarrow4x+5=0\Rightarrow x=-\frac{5}{4}\)

b)\(4x^2-x-5=0\)

\(\Leftrightarrow\left(x+1\right)\left(4x-5\right)=0\)

\(\Rightarrow x=-1;x=\frac{5}{4}\)

16 tháng 8 2017

Bài 2:

a)\(x^3+5x^2+3x-9\)

\(=\left(x-1\right)\left(x+3\right)^2\)

b)\(x^3-7x-6\)

\(=\left(x-3\right)\left(x+1\right)\left(x+2\right)\)

c)\(3x^3-7x^2+17x-5\)

\(=\left(3x-1\right)\left(x^2-2x+5\right)\)