Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 6x(3x +5)-2x(9x-2)=17
6x3x+6x5-2x9x-2x(-2)=17
\(18x^2\)+30x-\(18x^2\)+4x=17
\(18x^2-18x^2\)+ 34x=17
0 +34x=17
x=17:34
x=0.5
b)2x(3x-1)-3x(2x+11)-70=0
2x3x-2x1-3x2x+3x11-70=0
\(6x^2-2x-6x^2+33x-70=0\)
-2x+33x-70=0
31x-70=0
31x=0+70
31x=70
x=\(\frac{70}{31}\)
(trong câu c dấu . của mình là nhân nha)
c)5x(2x-3)-4(8-3x)=2(3+5x)
5x2x-5x3-4.8+4.3x=2.3+2.5x
\(10x^2-15x-32+12x=6+10x\)
\(10x^2-15x+12x-10x=6+32\)
\(10x^2-13x=38\)
tạm thời mình bí chổ này thông cảm nha bạn
\(-2x^2+5x=16\)
\(-2x^2+5x-16=0\)
\(-\left(2x^2-5x+16\right)=0\)
\(2x^2-5x+16=0\)
\(2\left(x^2-\frac{5}{2}x+8\right)=0\)
\(x^2-\frac{5}{2}x+8=0\)
\(x^2-\frac{5}{2}x+\frac{25}{16}+\frac{103}{16}=0\)
\(\left(x-\frac{5}{4}\right)^2+\frac{103}{16}=0\)
Ta có: \(\left(x-\frac{5}{4}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-\frac{5}{4}\right)^2+\frac{103}{16}\ge\frac{103}{16}>0\)
Mà: \(\left(x-\frac{5}{4}\right)^2+\frac{103}{16}=0\)
=> Vô lí
Vậy : ko có giá trị thỏa mãn của x
=.= hok tốt!!
a/ (x + 3)(x - 2) + 3x = 4(x + 3/4)
=> x2 + x - 6 + 3x = 4x + 3
=> x2 = 9 => x = 3 hoặc x = -3
Vậy x = 3 , x = -3
b/ (x2 - 5)(x + 2) + 5x = 2x2 + 17
=> x3 + 2x2 - 5x - 10 + 5x - 2x2 - 17 = 0
=> x3 = 27 => x3 = 33 => x = 3
Vậy x = 3
\(3\left(5x-1\right)-x\left(x-2\right)+x^2-13x=7\)
\(\Leftrightarrow15x-3-x^2+2+x^2-13x=7\)
\(\Leftrightarrow2x-1=7\)
\(\Leftrightarrow2x=8\)
\(\Leftrightarrow x=\frac{8}{2}=4\)
\(x.[\left(-2x\right)^2+5x]=16\)
\(\Rightarrow x.[\left(-4x\right)+5x]=16\)
\(\Rightarrow x.x=16\)
\(\Rightarrow2x=16\Rightarrow x=8\)
Vay \(x=8\)
a) \(2\left(x+5\right)-x^2-5x=0\)
\(\Leftrightarrow2x+10-x^2-5x=0\)
\(\Leftrightarrow-x^2-3x+10=0\)
\(\Leftrightarrow x^2+3x-10=0\)
\(\Leftrightarrow x^2-2x+5x-10=0\)
\(\Leftrightarrow x\left(x-2\right)+5\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-5\end{cases}}}\)
b) \(x^3-6x^2+12x-8=0\)
\(\Leftrightarrow\left(x^3-8\right)-\left(6x^2-12x\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+4\right)-6x\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+4-6x\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-2\right)^2=0\)
\(\Leftrightarrow\left(x-2\right)^3=0\)
\(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
c)\(16x^2-9\left(x+1\right)^2=0\)
\(\Leftrightarrow\left(4x\right)^2-\left[3\left(x+1\right)\right]^2=0\)
\(\Leftrightarrow\left(4x-3x-1\right)\left(4x+3x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(7x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\7x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{1}{7}\end{cases}}}\)
d) \(x^3+x=0\)
\(\Leftrightarrow x^2\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)
e)\(x^2-2x-3=0\)
\(\Leftrightarrow x^2+x-3x-3=0\)
\(\Leftrightarrow x\left(x+1\right)-3\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}}\)
\(5x\left(x-2018\right)-x+2018=0\)
\(5x\left(x-2018\right)-\left(x-2018\right)=0\)
\(\left(x-2018\right)\left(5x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2018=0\\5x-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=2018\\x=\frac{1}{5}\end{cases}}\)
Vậy.........
\(\left(x^2-5\right)\left(x+2\right)+5x=2x^2+17\)
\(\Rightarrow\left(x^3+2x^2-5x-10\right)+5x=2x^2+17\)
\(\Rightarrow x^3+2x^2-5x-10+5x=2x^2+17\)
\(\Rightarrow x^3+2x^2-10=2x^2+17\)
\(\Rightarrow x^3-10=17\)
\(\Rightarrow x^3=17+10=27\)
\(\Rightarrow x^3=3^3\)
\(\Rightarrow x=3\)
(x2−5)(x+2)+5x=2x2+17
⇒(x3+2x2−5x−10)+5x=2x2+17
⇒x3+2x2−5x−10+5x=2x2+17
⇒x3+2x2−10=2x2+17
⇒x3−10=17
⇒x3=17+10=27
⇒x3=33
⇒x=3