K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Leftrightarrow\dfrac{x+1}{x^2+x+1}-\dfrac{x-1}{x^2-x+1}=\dfrac{2\left(x+2\right)^2}{\left(x+1\right)\left(x-1\right)\left(x^2-x+1\right)\left(x^2+x+1\right)}\)

Suy ra: \(\left(x+1\right)^2\cdot\left(x^2-x+1\right)-\left(x-1\right)^2\cdot\left(x^2+x+1\right)=2\left(x+2\right)^2\)

\(\Leftrightarrow\left(x^2+2x+1\right)\left(x^2-x+1\right)-\left(x^2-2x+1\right)\left(x^2+x+1\right)=2\left(x+2\right)^2\)

\(\Leftrightarrow x^4+x^3+x+1-x^4+x^3+x-1=2\left(x+2\right)^2\)

\(\Leftrightarrow2x^3+2x-2\left(x+2\right)^2=0\)

\(\Leftrightarrow2x^2\left(x+1\right)-2\left(x+2\right)^2=0\)

 

29 tháng 6 2016

a)(x-1)(x2+x+1)-x(x+2)(x-2)=5

=>x3-1-4x-x3=5

=>x3-x3+4x-1=5

=>4x-1=5

=>4x=6

=>x=3/2

b)(x-2)^3-(x-3)(x^2+3x+9)+6(x+1)^2=15

=>x3-6x2+12x-8-x3+27+6x2+12x+6=15

=>(x3-x3)-(-6x2+6x2)+(12x+12x)-8+27+6=15

=>24x+25=15

=>24x=-10

=>x=-5/12

c)6(x+1)^2-2(x+1)^3+2(x-1)(x^2+x+1)=1

=>6x2+12x+6-2x3-6x2-6x-2+2x3-2=1

=>(6x2-6x2)+(12x-6x)-(-2x3+2x3)+6-2-2=1

=>6x+2=1

=>6x=-1

=>x=-1/6

23 tháng 2 2021

1)\(2x+6=0\)

\(\Leftrightarrow2x=-6\)

\(\Leftrightarrow x=-3\)

Vậy : x=3 là nghiệm PT

2)\(\left(x^2-2x+1\right)-4=0\)

\(\Leftrightarrow\left(x-1\right)^2=4\)

\(\Leftrightarrow\hept{\begin{cases}x-1=2\\x-1=-2\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\x=-1\end{cases}}}\)

Vậy:....

3)\(\frac{x-2}{x+2}+\frac{3}{x-2}=\frac{x^2-11}{x^2-4}\)

\(\Rightarrow\left(x-2\right)^2+3\left(x+2\right)=x^2-11\)

\(\Leftrightarrow x^2-4x+4+3x+6-x^2+11=0\)

\(\Leftrightarrow-x+21=0\)

\(\Leftrightarrow-x=-21\)

\(\Leftrightarrow x=21\)

Vậy:......

4) \(x\left(x^2-1\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\x^2-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x^2=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\x=1\end{cases}}}\)

Vậy:........

5)\(4x+20=0\)

\(\Leftrightarrow4x=-20\)

\(\Leftrightarrow x=-5\)

Vậy:...

6)\(\frac{x+3}{x+1}+\frac{x-2}{x}=2\)

\(\Rightarrow x\left(x+3\right)+\left(x+1\right)\left(x-2\right)=2x\left(x+1\right)\)

\(\Leftrightarrow x^2+3x+x^2-2x+x-2-2x^2-2x=0\)

\(\Leftrightarrow-2=0\)(vô lí)

Vậy : PT vô nghiệm

7)\(\frac{1+2x-5}{6}=\frac{3-x}{4}\)

\(\Leftrightarrow\frac{-4+2x}{6}=\frac{3-x}{4}\)

\(\Rightarrow2\left(-4+2x\right)=3\left(3-x\right)\)

\(\Leftrightarrow-8+4x-9+3x=0\)

\(\Leftrightarrow-17+7x=0\)

\(\Leftrightarrow7x=17\)

\(\Leftrightarrow x=\frac{17}{7}\)

8) Làm tương tự

9) \(2\left(x+1\right)=5x-7\)

\(\Leftrightarrow2x+2-5x+7=0\)

\(\Leftrightarrow-3x+9=0\)

\(\Leftrightarrow-3x=-9\)

\(\Leftrightarrow x=3\)

#H

1.\(2x+6=0\)

\(\Leftrightarrow2\left(x+3\right)=0\)

\(\Leftrightarrow x+3=0\)

\(\Leftrightarrow x=3\)

Vậy tập nghiệm của PT là \(S=\left\{3\right\}\)

2.\(\left(x^2-2x+1\right)-4=0\)

\(\Leftrightarrow\left(x-1\right)^2-4=0\)

\(\Leftrightarrow\left(x-1-2\right)\left(x-1+1\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)

Vậy tập nghiệm của PT là \(S=\left\{3;-1\right\}\)

3.\(\frac{x-2}{x+2}+\frac{3}{x-2}=\frac{x^2-11}{x^2-4}\)

ĐKXĐ :\(x\ne\pm2\)

Ta có ; \(\frac{x-2}{x+2}+\frac{3}{x-2}=\frac{x^2-11}{x^2-4}\)

\(\Leftrightarrow\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}+\frac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{x^2-11}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow\frac{x^2-4x+4+3x+6}{\left(x-2\right)\left(x+2\right)}=\frac{x^2-11}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow\frac{x^2-x+10}{\left(x-2\right)\left(x+2\right)}=\frac{x^2-11}{\left(x-2\right)\left(x+2\right)}\)

\(\Rightarrow x^2-x+10=x^2-11\)

\(\Leftrightarrow21-x=0\)

\(\Leftrightarrow x=21\)(Thỏa mãn ĐKXĐ)

Vậy tập nghiệm của PT là \(S=\left\{21\right\}\)

4.\(x\left(x^2-1\right)=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow x=0\)

hoặc \(x-1=0\)

hoặc \(x+1=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)

Vậy tập nghiệm của PT là \(S=\left\{0;\pm1\right\}\)

5.\(4x+20=0\)

\(\Leftrightarrow4\left(x+5\right)=0\)

\(\Leftrightarrow x+5=0\)

\(\Leftrightarrow x=-5\)

Vậy tập nghiệm của PT là \(S=\left\{-5\right\}\)

6.\(\frac{x+3}{x+1}+\frac{x-2}{x}=2\)

ĐKXĐ : \(x\notin\left\{-1;0\right\}\)

Ta có : \(\frac{x+3}{x+1}+\frac{x-2}{x}=2\)

\(\Leftrightarrow\frac{x\left(x+3\right)}{x\left(x+1\right)}+\frac{\left(x-2\right)\left(x+1\right)}{x\left(x+1\right)}=\frac{2x\left(x+1\right)}{x\left(x+1\right)}\)

\(\Leftrightarrow\frac{x^2+3x+x^2-x-2}{x\left(x+1\right)}=\frac{2x^2+2x}{x\left(x+1\right)}\)

\(\Leftrightarrow\frac{x^2+2x-2}{x\left(x+1\right)}=\frac{2x^2+2x}{x\left(x+1\right)}\)

\(\Rightarrow2x^2+2x-2=2x^2+2x\)

\(\Leftrightarrow0x=2\)(Vô lí)

Vậy PT vô nghiệm 

7.\(1+\frac{2x-5}{6}=\frac{3-x}{4}\)

\(\Leftrightarrow\frac{12}{12}+\frac{2\left(2x-5\right)}{12}=\frac{3\left(3-x\right)}{12}\)

\(\Leftrightarrow\frac{12+4x-10}{12}=\frac{9-3x}{12}\)

\(\Leftrightarrow\frac{4x+2}{12}=\frac{9-3x}{12}\)

\(\Rightarrow4x+2=9-3x\)

\(\Leftrightarrow7x=7\)

\(\Leftrightarrow x=1\)

Vậy tập nghiệm của PT là \(S=\left\{1\right\}\)

8.\(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x^2-2x}\)

ĐKXĐ : \(x\notin\left\{0;2\right\}\)

Ta có : \(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x^2-2x}\)

\(\Leftrightarrow\frac{x\left(x+2\right)}{x\left(x-2\right)}-\frac{x-2}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}\)

\(\Leftrightarrow\frac{x^2+2x-x+2}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}\)

\(\Leftrightarrow\frac{x^2+x+2}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}\)

\(\Rightarrow x^2+x+2=2\)

\(\Leftrightarrow x^2+x=0\)

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)(Không thỏa mãn ĐKXĐ)_(Thỏa mãn ĐKXĐ)

Vậy tập nghiệm của PT là \(S=\left\{-1\right\}\)

9.\(2\left(x+1\right)=5x-7\)

\(\Leftrightarrow2x+2=5x-7\)

\(\Leftrightarrow3x=9\)

\(\Leftrightarrow x=3\)

Vậy tập nghiệm của PT là \(S=\left\{3\right\}\)

8 tháng 12 2019

bn nên vt thành phân thức thì mọi người sẽ dễ nhìn và sẽ giải giúp bn!!!

8 tháng 7 2018

1/ \(1+\frac{2}{x-1}+\frac{1}{x+3}=\frac{x^2+2x-7}{x^2+2x-3}\)

ĐKXĐ: \(\hept{\begin{cases}x-1\ne0\\x+3\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne-3\end{cases}}\)

<=> \(1+\frac{2\left(x+3\right)+x-1}{\left(x-1\right)\left(x+3\right)}=\frac{x^2+2x-3-5}{x^2+2x-3}\)

<=> \(1+\frac{2x+6+x-1}{x^2+2x-3}=1-\frac{5}{x^2+2x-3}\)

<=> \(\frac{3x+5}{x^2+2x-3}+\frac{5}{x^2+2x-3}=1-1\)

<=> \(\frac{3x+5}{x^2+2x-3}+\frac{5}{x^2+2x-3}=0\)

<=> \(\frac{3x+10}{x^2+2x-3}=0\)

<=> \(3x+10=0\)

<=> \(x=-\frac{10}{3}\)

a: \(\dfrac{x-1}{x^2-x+1}-\dfrac{x+1}{x^2+x+1}=\dfrac{10}{x\left(x^4+x^2+1\right)}\)

\(\Leftrightarrow x\left(x-1\right)\left(x^2+x+1\right)-x\left(x+1\right)\left(x^2-x+1\right)=10\)

\(\Leftrightarrow x\left(x^3-1\right)-x\left(x^3+1\right)=10\)

=>-2x=10

hay x=-5

d: \(\Leftrightarrow\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+...+\dfrac{1}{\left(x+7\right)\left(x+8\right)}=\dfrac{1}{14}\)

\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+8}=\dfrac{1}{14}\)

\(\Leftrightarrow\left(x+1\right)\left(x+8\right)=14\left(x+8\right)-14\left(x+1\right)\)

\(\Leftrightarrow x^2+9x+8=14x+112-14x-14=98\)

\(\Leftrightarrow x^2+9x-90=0\)

\(\Leftrightarrow x\in\left\{6;-15\right\}\)

16 tháng 12 2018

Hỏi đáp Toán

16 tháng 12 2018

Hỏi đáp Toán