Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{x-2}+3=\dfrac{3-x}{x-2}\)
ĐKXĐ: x ≠ 2
\(\dfrac{1}{x-2}+3=\dfrac{3-x}{x-2}\)
\(\Leftrightarrow\dfrac{2+3\left(x-2\right)}{x-2}=\dfrac{3-x}{x-2}\)
<=> 2 + 3x - 6 = 3 - x
<=> 2 + 3x - 6 - 3 + x = 0
<=> 4x - 7 = 0
\(\Leftrightarrow x=\dfrac{7}{4}\)
Vậy:...
\(\dfrac{1}{x-2}+3=\dfrac{3-x}{x-2}\) (ĐKXĐ \(x\ne2\))
\(\Leftrightarrow\dfrac{1}{x-2}+\dfrac{3\left(x-2\right)}{x-2}=\dfrac{3-x}{x-2}\)
\(\Leftrightarrow\dfrac{1+3x-6}{x-2}=\dfrac{3-x}{x-2}\)
\(\Rightarrow3x-5=3-x\)
\(\Leftrightarrow3x+x=3+5\)
\(\Leftrightarrow4x=8\)
\(\Leftrightarrow x=2\)
Mà \(x\ne2\) nên phương trình đề bài cho vô nghiệm
\(\dfrac{2x}{x-3}+\dfrac{x}{x+3}=\dfrac{2x^2}{x^2-9}\left(ĐKXĐ:x\ne\pm3\right)\)
\(\Leftrightarrow\dfrac{2x\left(x+3\right)+x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{2x^2}{\left(x-3\right)\left(x+3\right)}\)
\(\Rightarrow2x\left(x+3\right)+x\left(x-3\right)=2x^2\)
\(\Leftrightarrow2x^2+6x+x^2-3x-2x^2=0\)
\(\Leftrightarrow x^2+3x=0\)
\(\Leftrightarrow x\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(n\right)\\x=-3\left(l\right)\end{matrix}\right.\)
Vậy ............................
ĐKXĐ: x khác 3 và x khác -3
\(\dfrac{2x}{x-3}+\dfrac{x}{x+3}=\dfrac{2x^2}{x^2-9}\)
\(\Leftrightarrow\dfrac{2x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{2x^2}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow2x^2+6x+x^2-3x=2x^2\)
\(\Leftrightarrow x^2+3x=0\)
\(\Leftrightarrow x\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\left(loại\right)\end{matrix}\right.\)
Vậy......
Biến đổi A ta được :
\(A=x\left(x+11\right)\left(x+3\right)\left(x+8\right)+144\)
\(=\left(x^2+11x\right)\left(x^2+11x+24\right)+144\)
\(=\left(x^2+11x\right)^2+24\left(x^2+11x\right)+144\)
\(=\left(x^2+11x\right)^2+2.12.\left(x^2+11x\right)+12^2\)
\(=\left(x^2+11x+12\right)^2\) là một số chính phương \(\forall x\in Z\)
Vậy A là một số chính phương (đpcm)
\(\left(5x^2+3x-2\right)^2=\left(4x^2-3x-2\right)^2\)
\(\Rightarrow\left(5x^2+3x-2\right)^2-\left(4x^2-3x-2\right)^2=0\)
\(\Rightarrow\left[\left(5x^2+3x-2\right)-\left(4x^2-3x-2\right)\right]\left[\left(5x^2+3x-2\right)+\left(4x^2-3x-2\right)\right]=0\)
\(\Rightarrow\left(5x^2+3x-2-4x^2+3x+2\right)\left(5x^2+3x-2+4x^2-3x-2\right)=0\)
\(\Rightarrow\left(x^2+6x\right)\left(9x^2-4\right)=0\)
\(\Rightarrow x\left(x+6\right)\left[\left(3x\right)^2-2^2\right]=0\)
\(\Rightarrow x\left(x+6\right)\left(3x-2\right)\left(3x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x+6=0\\3x-2=0\\3x+2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-6\\3x=2\\3x=-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-6\\x=\dfrac{2}{3}\\x=-\dfrac{2}{3}\end{matrix}\right.\)
\(\dfrac{x^2-2x-4}{x^2-2x-3}>1\)
\(\Leftrightarrow\dfrac{x^2-2x-4}{x^2-2x-3}-1>0\)
\(\Leftrightarrow\dfrac{x^2-2x-4-x^2+2x+3}{x^2-3x+x-3}>0\)
\(\Leftrightarrow\dfrac{-1}{\left(x-3\right)\left(x+1\right)}>0\)
\(\Leftrightarrow\left(x-3\right)\left(x+1\right)< 0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-3>0\\x+1< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x-3< 0\\x+1>0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>3\\x< -1\end{matrix}\right.\\\left\{{}\begin{matrix}x< 3\\x>-1\end{matrix}\right.\end{matrix}\right.\)
TH1 : vô lý
Vậy \(-1< x< 3\) thì \(\dfrac{x^2-2x-4}{x^2-2x-3}>1\)
1, <=> 13x = 19 <=x = 19/13
2, <=> 14x = - 15 <=> x = -15/14
3, <=> 8x = 11 <=> x = 11/8
4, <=> 9 - 7x = 4x + 3 <=> 11x = 6 <=> x = 6/11
5, <=> 11-11x = 21 - 5x <=> 6x = - 10 <=> x = -5/3
6, <=> -12 + 6x = 3 - x <=> 7x = 15 <=> x = 15/7
7, <=> 40 + 15x + 6x - 16 = 0 <=> 21x = - 24 <=> x = -8/7
8, <=> 6x - 3 - 3x + 1 = 0 <=> 3x - 2 = 0 <=> x = 2/3
9, <=> -4x + 12 = 7x - 3 <=> 11x = 15 <=> x = 15/11
10, <=> -5 - x - 3 = 2 - 5x <=> -8 - x = 2 - 5x <=> 4x = 10 <=> x = 5/2
\(1,\Leftrightarrow5x+8x=16+3\)
\(\Leftrightarrow13x=19\)
\(\Leftrightarrow x=\dfrac{19}{13}\)
Vậy \(S=\left\{\dfrac{19}{13}\right\}\)
\(b,\Leftrightarrow-5x-9x=8+7\)
\(\Leftrightarrow-14x=15\)
\(\Leftrightarrow x=-\dfrac{15}{14}\)
Vậy \(S=\left\{-\dfrac{15}{14}\right\}\)
\(c,-5x-3x=7-18\)
\(\Leftrightarrow-8x=-11\)
\(\Leftrightarrow x=\dfrac{11}{8}\)
\(d\Leftrightarrow,7x-4x=3-9\)
\(\Leftrightarrow3x=-6\)
\(\Leftrightarrow x=-2\)
Vậy \(S=\left\{-2\right\}\)
\(5,\Leftrightarrow-11x+5x=21-11\)
\(\Leftrightarrow-6x=10\)
\(\Leftrightarrow x=-\dfrac{5}{3}\)
Vậy \(S=\left\{-\dfrac{5}{3}\right\}\)
\(6,\Leftrightarrow-14+6x=5-x-2\)
\(\Leftrightarrow6x+x=5+14-2\)
\(\Leftrightarrow7x=17\)
\(\Leftrightarrow x=\dfrac{17}{7}\)
Vậy \(S=\left\{\dfrac{17}{7}\right\}\)
\(7,40+15x+6x-16=0\)
\(\Leftrightarrow15x+6x=16-40\)
\(\Leftrightarrow21x=-24\)
\(\Leftrightarrow x=-\dfrac{24}{21}\)
Vậy \(S=\left\{-\dfrac{24}{21}\right\}\)
\(8,6x-3-3x+1=0\)
\(\Leftrightarrow6x-3x=3-1\)
\(\Leftrightarrow3x=2\)
\(\Leftrightarrow x=\dfrac{2}{3}\)
Vậy \(S=\left\{\dfrac{2}{3}\right\}\)
Câu (9) và (10) bạn áp dụng như các câu trên, nhân các ngoặc và đổi dấu sau khi bỏ ngoặc hoặc chuyển vế.
ĐKXĐ: x khác 0; x khác 2
x+3/x=3x-1/3(x-2)
<=>3(x+3)(x-2)=x(3x-1)
<=>3x^2 + 3x - 6 = 3x^2 - x
<=>4x=6
<=>x=3/2(tm ĐKXĐ)
vậy,..........