Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x + 4)/2010 + (x+3)/2011 = (x+2)/2012 + (x+1)/2013
<=> [(x + 4)/2010 + 1] + [(x+3)/2011 + 1] = [(x+2)/2012 + 1] + [(x+1)/2013 + 1]
<=> (x + 2014)/2010 + (x + 2014)/2011 = (x + 2014)/2012 + (x + 2014)/2013
<=> (x + 2014)/2010 + (x + 2014)/2011 - (x + 2014)/2012 - (x + 2014)/2013 = 0
<=> (x + 2014).(1/2010 + 1/2011 - 1/2012 - 1/2013) = 0
Ta thấy (1/2010 + 1/2011 - 1/2012 - 1/2013) ≠ 0
Vậy suy ra x = -2014
\(\frac{x-1}{2013}+\frac{x-2}{2012}-\frac{x-3}{2011}=\frac{x-4}{2010}\)
\(\frac{x-1}{2013}+\frac{x-2}{2012}-\frac{x-3}{2011}-\frac{x-4}{2010}=0\)
\(\frac{x-1}{2013}-1+\frac{x-2}{2012}-1-\frac{x-3}{2011}+1-\frac{x-4}{2010}+1=0\)
\(\left(\frac{x-1}{2013}-1\right)+\left(\frac{x-2}{2012}-1\right)-\left(\frac{x-3}{2011}-1\right)-\left(\frac{x-4}{2010}-1\right)=0\)
\(\frac{x-2014}{2013}+\frac{x-2014}{2012}-\frac{x-2014}{2011}-\frac{x-2014}{2010}=0\)
\(\left(x-2014\right).\left(\frac{1}{2013}+\frac{1}{2012}-\frac{1}{2011}-\frac{1}{2010}\right)=0\)
\(x-2014=0:\left(\frac{1}{2013}+\frac{1}{2012}-\frac{1}{2011}-\frac{1}{2010}\right)\)
\(x-2014=0\)
\(x=2014\)
Nhớ tk cho mình nha =3
A.R.M.Y FIGHTING!!!!
a) \(\frac{x+4}{2009}+1+\frac{x+3}{2010}+1=\frac{x+2}{2011}+1+\frac{x+1}{2012}\)
\(\frac{x+4+2009}{2009}+\frac{x+3+2010}{2010}=\frac{x+2+2011}{2011}+\frac{x+2+2012}{2012}\)
\(\frac{x+2013}{2009}+\frac{x+2013}{2010}-\frac{x+2013}{2011}-\frac{x+2013}{2012}=0\)
\(\left(x+2013\right).\left(\frac{1}{2009}+\frac{1}{2010}-\frac{1}{2011}-\frac{1}{2012}\right)=0\) (1)
Vì \(\left(\frac{1}{2009}+\frac{1}{2010}-\frac{1}{2011}-\frac{1}{2012}\right)\ne0\)
Nên biểu thức (1) xảy ra khi \(x+2013=0\)
\(x=-2013\)
b) \(\left(x-2011\right)\left(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)=0\) (2)
Vì \(\left(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)\ne0\)
Nên biểu thức (2) xảy ra khi \(x-2011=0\)
\(x=2011\)
\(\frac{x+4}{2010}+\frac{x+3}{2011}=\frac{x+2}{2012}+\frac{x+1}{2013}\)
\(\Leftrightarrow\left(\frac{x+4}{2010}+1\right)+\left(\frac{x+3}{2011}+1\right)=\left(\frac{x+2}{2012}+1\right)+\left(\frac{x+1}{2013}+1\right)\)
\(\Leftrightarrow\frac{x+2014}{2010}+\frac{x+2014}{2011}=\frac{x+2014}{2012}+\frac{x+2014}{2013}\)
\(\Leftrightarrow\frac{x+2014}{2010}+\frac{x+2014}{2011}-\frac{x+2014}{2012}-\frac{x+2014}{2013}=0\)
\(\Leftrightarrow\left(x+2014\right)\left(\frac{1}{2010}+\frac{1}{2011}-\frac{1}{2012}-\frac{1}{2013}\right)=0\)
\(\Leftrightarrow x+2014=0\)
\(\Leftrightarrow x=-2014\)
V...
Ta có: \(\frac{x-1}{2013}+\frac{x-2}{2012}=\frac{x-3}{2011}+\frac{x-4}{2010}\)
\(\Rightarrow\frac{x-1}{2013}+1+\frac{x-2}{2012}+1=\frac{x-3}{2011}+1+\frac{x-4}{2010}+1\)
\(\Rightarrow\frac{x-2014}{2013}+\frac{x-2014}{2012}+\frac{x-2014}{2011}+\frac{x-2014}{2010}=0\)
\(\Rightarrow\left(x-2014\right).\left(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2011}\right)=0\)
Vì \(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}\ne0\)
=> x - 2014 =0
=> x = 2014
Vậy x = 2014
\(\dfrac{x+4}{2010}+\dfrac{x+3}{2011}=\dfrac{x+2}{2012}+\dfrac{x+1}{2013}\)
\(\Rightarrow\left(\dfrac{x+4}{2010}+1\right)+\left(\dfrac{x+3}{2011}+1\right)=\left(\dfrac{x+2}{2012}+1\right)+\left(\dfrac{x+1}{2013}+1\right)\)
\(\Rightarrow\dfrac{x+2014}{2010}+\dfrac{x+2014}{2011}=\dfrac{x+2014}{2012}+\dfrac{x+2014}{2013}\)
\(\Rightarrow\dfrac{x+2014}{2010}+\dfrac{x+2014}{2011}-\dfrac{x+2014}{2012}-\dfrac{x+2014}{2013}=0\)
`=> (x+2014) (1/2010 + 1/2011-1/2012-1/2013)=0`
`=> x+2014=0` ( vì `1/2010 + 1/2011-1/2012-1/2013≠0 )`
`=>x=-2014`
\(\frac{x+1}{2013}+\frac{x+2}{2012}=\frac{x+3}{2011}+\frac{x+4}{2010}\)
\(\Rightarrow\left(\frac{x+1}{2013}+1\right)+\left(\frac{x+2}{2012}+1\right)=\left(\frac{x+3}{2011}+1\right)+\left(\frac{x+4}{2010}+1\right)\)
\(\Rightarrow\frac{x+2014}{2013}+\frac{x+2014}{2012}-\frac{x+2014}{2011}-\frac{x+2014}{2010}=0\)
\(\Rightarrow\left(x+2014\right).\left(\frac{1}{2013}+\frac{1}{2012}-\frac{1}{2011}-\frac{1}{2010}\right)=0\)
Vì \(\frac{1}{2013}+\frac{1}{2012}-\frac{1}{2011}-\frac{1}{2010}\ne0\)nên để \(\left(x+2014\right).\left(\frac{1}{2013}+\frac{1}{2012}-\frac{1}{2011}-\frac{1}{2010}\right)=0\)
Thì x+2014=0
=>x=-2014
\(\frac{x+1}{2013}+\frac{x+2}{2012}=\frac{x+3}{2011}+\frac{x+4}{2010}\)
=> \(\frac{x+1+2013}{2013}+\frac{x+2+2012}{2012}=\frac{x+3+2011}{2011}+\frac{x+4+2010}{2010}\)
=> \(\frac{x+2014}{2013}+\frac{x+2014}{2012}=\frac{x+2014}{2011}+\frac{x+2014}{2010}\)
=> \(\left(x+2014\right)\left(\frac{1}{2013}+\frac{1}{2012}-\frac{1}{2011}-\frac{1}{2010}\right)=0\)
=> \(x+2014=0\)(do \(\frac{1}{2013}+\frac{1}{2012}-\frac{1}{2011}-\frac{1}{2010}\ne0\))
=> \(x=-2014\)
Ta có: \(\frac{x+4}{2010}+\frac{x+3}{2011}=\frac{x+2}{2012}+\frac{x+1}{2013}\)
\(\Rightarrow\left(\frac{x+4}{2010}+1\right)+\left(\frac{x+3}{2011}+1\right)=\left(\frac{x+2}{2012}+1\right)+\left(\frac{x+1}{2013}+1\right)\)
\(\Rightarrow\left(x+2014\right)\left(\frac{1}{2010}+\frac{1}{2011}-\frac{1}{2012}-\frac{1}{2013}\right)=0\)
\(\Rightarrow x=-2014\)