Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(tan3A=tan\left(A+2A\right)\)
\(=\frac{tanA+tan2A}{1-tanAtan2A}\)
\(=\frac{\frac{tanA+2tanA}{1-tan^2A}}{\frac{1-2tan^2A}{1-tan^2A}}\)
\(=\frac{\left(tanA-tan^3A+2tanA\right)}{1-tan^2A-2tan^2A}\)
\(=\frac{3tanA-tan^3A}{1-3tan^2A}\)
b)\(VT=cos^6A+sin^6A\)
\(=\left(cos^2A\right)^3+\left(sin^2A\right)^3\)
\(=\left(cos^2A+sin^2A\right)^3-3cos^2Asin^2A\left(cos^2A+sin^2A\right)^2\)
\(=1^3-3cos^2Asin^2A\left(1\right)^2\).Từ đó,\(sin^2A+cos^2A=1\)
\(=1-3cos^2Asin^2A=VP\)
a) \(\frac{1-\cos\alpha}{\sin\alpha}=\frac{\sin\alpha}{1+\cos a}\)
\(\Leftrightarrow\left(1-\cos\alpha\right)\left(1+\cos\alpha\right)=\sin^2\alpha\)
\(\Leftrightarrow1-\cos^2\alpha=\sin^2\alpha\)
\(\Leftrightarrow\sin^2\alpha+\cos^2\alpha=1\)( luôn đúng )
\(\Rightarrow\frac{1-\cos\alpha}{\sin\alpha}=\frac{\sin\alpha}{1+\cos\alpha}\)
a)
^MAC = ^MCA = a ---> ^AMH = ^MAC + ^MCA = 2a
sin2a = sinAMH = AH/MA = 2AH/BC = 2(AH/AC).(AC/BC) = 2 sina.cosa
b)
1+cos2a = 1+cosAMH = 1+MH/MA = (MA+MH)/MA = CH/MA = 2CH/BC =
= 2 (CH/AC).(AC/BC) = 2 cosa.cosa = 2 cos^2 (a)
c)
1-cos2a = 1-cosAMH = 1-MH/MA = (MA-MH)/MA = BH/MA = 2BH/BC =
= 2 (BH/AB).(AB/BC) = 2 sinBAH.sinACB = 2 sin^2 (a)
(^BAH = ^ACB = a vì chúng cùng phụ với góc ABC)