Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta co:
\(\frac{1}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{n+1+n}< \frac{\sqrt{n+1}-\sqrt{n}}{2\sqrt{n+1}.\sqrt{n}}=\frac{1}{2}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
Ap vào bài toan được
\(S_n=\frac{1}{3\left(1+\sqrt{2}\right)}+\frac{1}{5\left(\sqrt{2}+\sqrt{3}\right)}+...+\frac{1}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}\)
\(< \frac{1}{2}\left(\frac{1}{1}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{\sqrt{n+1}}\right)< \frac{1}{2}\)
Xét vế trái : \(\left(\sqrt{n+1}-\sqrt{n}\right)^2=2n+1-2\sqrt{n}.\sqrt{n+1}\)
Xét vế phải : \(\sqrt{\left(2n+1\right)^2}-\sqrt{\left(2n+1\right)^2-1}=\left|2n+1\right|-\sqrt{\left(2n+1-1\right)\left(2n+1+1\right)}\)
\(=2n+1-\sqrt{2n.2\left(n+1\right)}=2n+1-2\sqrt{n}.\sqrt{n+1}\)
=> VT = VP => đpcm
Bài làm
Khai triển vế trái ta được
\(\left(\sqrt{n+1}\right)^2-2\sqrt{n+1}.\sqrt{n}+\left(\sqrt{n}\right)^2\)
\(=n+1+n-2\sqrt{n\left(n+1\right)}\)
\(=2n+1-2\sqrt{n\left(n+1\right)}\)
Biến đổi vế phải
\(\left(2n+1\right)-\sqrt{4n^2+4n+1-1}=2n+1-\sqrt{4n\left(n+1\right)}\)
\(=2n+1-\sqrt{4}.\sqrt{n\left(n+1\right)}\)
Từ đó suy ra hai vế bằng nhau. Vậy đẳng thức đúng.
(Thực ra đẳng thức đúng với n là số thực không âm)
Xét vế trái : \(\left(\sqrt{n+1}-\sqrt{n}\right)^2=2n+1-2\sqrt{n}.\sqrt{n+1}\)
Xét vế phải : \(\sqrt{\left(2n+1\right)^2}-\sqrt{\left(2n+1\right)^2-1}=\left|2n+1\right|-\sqrt{\left(2n+1-1\right)\left(2n+1+1\right)}=2n+1-2\sqrt{n}.\sqrt{n+1}\)
=> VT = VP
=> đpcm
khó quá ms đầu năm s học cao thế bạn ơi